共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatigue properties of FS welds with a kissing bond (bonded welds) were studied by comparing the test results of bonded welds
with those of sound welds. The fatigue life of bonded welds is 21∼43 times shorter than that of sound welds under the stress
ratio R = 0.1, and the fatigue characteristic values of each welds have decreased from 100.24 MPa for sound welds to 65.57 MPa for
bonded welds at 2 × 10 6 cycles. At the macroscopic level there is no evidence of failure by shear. The fatigue fracture revealed cracks initiated
from the root tip of kissing bond. 相似文献
2.
对比分析了搅拌摩擦和氩弧焊两种工艺方法对铝合金焊接接头疲劳性能的影响,建立了焊接接头的S-N曲线,结果表明:在相同的载荷条件下,搅拌磨擦焊接接头的疲劳性能优于氩弧焊接头。搅拌摩擦焊接头疲劳寿命N=106次的疲劳强度值约为59~65MPa之间。对焊接接头显微组织的分析表明:搅拌摩擦焊接接头具有比氩弧焊接头更为细小的晶粒和狭窄的焊接热影响区,阻碍了滑移带的形成和裂纹的扩展,从而提高了接头的疲劳性能。TIG焊接接头疲劳端口分析显示,焊接缺陷是主要的疲劳裂纹源。 相似文献
3.
The flow patterns in dissimilar friction stir welds of AA5083-O and AA6082-T6 alloys have been studied. It was observed that material flows (pushes but does not mix) more from the advancing side into the retreating side. Material flow from the retreating side to the advancing side only occurs in the tool shoulder domain, and the pull is greatest at the transition region between the tool shoulder domain and the tool pin domain. It was also observed that materials tend to extrude out only in the thermomechanically affected zone of the retreating side, which was influenced by rotation of both the tool shoulder and the tool pin. The finest grains were present in the regions closest to the tool edge in the retreating side. The volume fraction of recrystallized grains increases down into the deeper part of the nugget from the flow arm region. Microhardness measurements revealed that regions of lowest hardness values were the nugget and the heat affected zone of the AA6082-T6 alloy side. The welding speeds had no influence on the microhardness values per se, but affected the mixing proportions in the flow arm and in the nugget stem. 相似文献
4.
In this study, the effects of friction stir spot weld arrangements as multi type on fatigue behavior of friction stir spot welded joints is investigated. The joints that are considered with five different styles for friction stir spot welded joints: one-row four joints parallel to loading direction, two-row four-joint specimen, one-row four joints perpendicular to the loading axis, three-row as diamond shape with four joints in each edge and five friction stir spot welded specimen in three rows that middle row consist three joints. The correlation between micro hardness, cyclic material constants and mechanical strength of different zones around the friction stir spot welds are assumed to be proportional to base material hardness. A non-linear finite element analysis was carried out for simulating tensile shear multi friction stir spot welded joints with ANSYS software by considering gap effects. Using the local stress and strain calculated with finite element analysis, fatigue lives of specimens were predicted with Morrow, modified Morrow and Smith–Watson–Topper (SWT) damage equations. Experimental fatigue tests of welded specimens have been carried out using constant amplitude load control servo-hydraulic fatigue testing machine. The results reveal that there is relatively good agreement between fatigue life predictions and experimental data in reasonable fatigue life regime. 相似文献
5.
Although the vast majority of friction stir welds will be free of flaws, it is not always possible to assume that they are. The properties of welds with flaws are needed to enhance confidence in the design and application of friction stir welded joints. The monotonic strength and fatigue behaviour of single-sided butt welds in 6–7 mm thick AA5083-O, AA5083-H321 and AA6082-T6, both without and with root flaws, was investigated. Examination of the root flaw faces showed that there was bonding between the flanks of the flaws but the bonding was of poor quality and incomplete. This meant that the strength and ductility of the flaws were lower than the surrounding material. However, the comparison of the mechanical test results suggests that root flaws up to a certain size are tolerable without a significant loss in performance when compared to nominally flaw-free welds. These data also suggest that even friction stir welds with root flaws exceed the design life for equivalent fusion welds set out in the draft Eurocode 9 and that a higher rating may be warranted. Limited test results produced for this work need to be supplemented with a wider range of tests. 相似文献
7.
建立了铝合金焊接接头的S-N曲线,对比分析了搅拌摩擦和氩弧焊两种工艺对其焊接接头疲劳性能的影响,结果表明:在载荷相同的条件下,铝合金搅拌磨擦焊接接头的疲劳性能优于氩弧焊接头,搅拌摩擦焊接头的疲劳寿命N=106次的疲劳强度为59-65 MPa,搅拌摩擦焊接接头具有比氩弧焊接头更为细小的晶粒和狭窄的焊接热影响区,阻碍了滑移带的形成和裂纹的扩展,从而提高了接头的疲劳性能,铝合金焊接接头的缺陷是主要的疲劳裂纹源. 相似文献
8.
The effect of the friction stir welding process on the toughness properties of AA6013-T6 sheet has been investigated. The alloy was received and welded in the peak aged T6 condition and the toughness measured at intervals across the weld by means of a notched tear test, with subsequent fractographic examination via field emission gun scanning electron microscope (FEGSEM) and microstructural characterisation via optical microscopy and energy dispersive X-ray (EDX). It is shown that the controlling factors for toughness in AA6013-T6 following FSW are the population and distribution of the coarse α-(Al,Fe,Si,Mn) intermetallic particles, with strength variations caused by precipitate dissolution, coarsening and transformation representing a secondary consideration. Minimum toughness occurs at the boundary between the weld nugget and the heat-affected zone due to the alignment and concentration of coarse particles at this point by the FSW process. A simple model is implemented and provides a reasonable prediction of the weld toughness from simple microstructural observations. 相似文献
9.
Liquid penetration induced (LPI) cracking is investigated during friction stir spot weld of AZ91, AZ31 and AM60 magnesium
alloys. A combination of stir zone temperature measurement and detailed metallography has revealed differences in the cracking
tendencies of different magnesium alloys when the dwell time during spot welding is varied. LPI cracking in AZ91 spot welds
involves the following sequence of events: the formation of eutectic films in the thermo-mechanically affected zone (TMAZ) region immediately adjacent to the stir zone extremity, engulfment
of melted eutectic films as the stir zone width increases during the dwell period, penetration of α−Mg grain boundaries and
crack propagation when torque is applied by the rotating tool. Cracking occurs early in the dwell period during AZ91 spot
welding and almost the entire stir zone is removed when the rotating tool is withdrawn. However, crack-free AZ31 and AM60
spot welds are produced when a dwell time of 4 s is used since the stir zone temperatures are much higher than the α-Mg +
Mg 17Al 12 eutectic temperature (437 °C) and melted eutectic films dissolve rapidly following their engulfment by the growing stir zone.
In contrast, the temperature during the dwell period in AZ91 spot welding is close to 437 °C and melted eutectic films are
not completely dissolved so that spot welds produced using a dwell time of 4 s exhibit LPI cracking. 相似文献
10.
Fully reversed axial fatigue tests have been performed in order to investigate the fatigue behaviour in the friction stir welds of 1050-O, 5083-O, 6061-T6 and 7075-T6 aluminium alloys. In all alloys, the comparative studies on the fatigue behaviour between parent materials and welds have been done. The fatigue behaviour of the welds was sensitive to the microstructures such as stir zone, thermo-mechanically affected zone and heat affected zone. The fatigue strengths of the welds are comparative to or lower than those of the parent materials. The observed fatigue strengths were discussed based on the microstructure and crack initiation behaviour. 相似文献
11.
Two different types of welds, Metal Inert Gas (MIG) and Friction Stir Welding (FSW), have been used to weld aluminum alloy
5083. The microstructure of the welds, including the nugget zone and heat affected zone, has been compared in these two methods
using optical microscopy. The mechanical properties of the weld have been also investigated using the hardness and tensile
tests. The results show that both the methods could successfully be used to weld such alloy. The strength of the joints is
comparable to the strength of the base metal in both cases. However, FSWed samples have shown higher strength in comparison
to the MIG samples. The results also show that the extension of the heat affected zone is higher in the MIG method in comparison
to the FSW method. The weld metal microstructure of MIG welded specimen contains equiaxed dendrites as a result of solidification
process during MIG welding while FSWed samples have wrought microstructures. 相似文献
12.
The effect of processing parameters on static strength and fracture mechanisms of dissimilar friction stir spot welds between different aluminium alloys was studied. Tensile shear strength increased with decreasing tool rotational speed and increasing tool holding time, while cross tension strength decreased with increasing both parameters. Two fracture modes were observed: nugget shear fracture and mixed mode fracture under tensile shear loading, and debonding and pull‐out of the nugget under cross tension loading. Based on experimental observation, the dependence of static strength on processing parameters and the occurrence of different fracture modes were discussed. 相似文献
13.
采用基于固体力学的有限元方法建立了搅拌摩擦焊接过程的三维数值模型,研究了在焊接参数不同的情况下搅拌摩擦焊接过程中力学特征的变化.数值模拟结果和试验结果都表明,等效塑性应变能近似地反映焊接构件焊缝区域材料显微结构的演化,较高的搅拌头转速和较低的焊速有利于提高焊缝的质量.焊接构件特定的等效塑性应变等值线可以较好的对应不同焊接区域的边界.随着搅拌头转速的提高,等效塑性应变随之增大,但搅拌探针与焊接构件交界面上的接触压力随之减小.等效塑性应变随着搅拌头平移速度的增大而减小. 相似文献
14.
The effect of the welding speed on the microstructure, local and overall mechanical properties of friction stir welded joints has been investigated in the aluminium alloy 6005A-T6. The fine hardening precipitation within the heat-affected zone has been characterized by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Post-welding heat treatments have been applied to obtain indications on the level of solid solution supersaturation in the as welded state. The local mechanical behaviour was determined using thin specimens extracted from various regions of the weld. The overall properties were measured on samples cut perpendicular to the weld. Specific attention was devoted to the relationship between the local microstructure and local hardening properties in the weakest region, which govern the overall strength and ductility of the welds. 相似文献
15.
Equal‐channel angular rolling (ECAR) is a continuous severe plastic deformation process. In this process, severe shear strains apply to the sheet. This strain increases the yield or ultimate strength of sheet without significant change in sheet dimension. In this paper, the effect of ECAR process on mechanical properties and fatigue life of manufactured sheets will be studied. Four AA5083 samples have been prepared and annealed for obtaining stress‐free samples. Three samples have been rolled by the ECAR process with one, two and three passes of rolling, respectively. Mechanical tests including tensile test, hardness and axial fatigue tests have been carried out on prepared samples. Fatigue tests have been implemented according to a strain‐based approach with a constant strain ratio equal to 0.75 and 0.5 Hz frequency of loading. All of the tests have been carried out in controlled laboratory conditions. Results show that the ultimate tensile strength of samples increases with increasing the pass of rolling. Also, the maximum elongation of samples decreases. Maximum elongation was 17% in annealed samples, while it decreases to 10% in samples with three passes of rolling. The hardness of samples has been measured, and the results show an increase in hardness for a higher pass of the ECAR process. Fatigue test results show that fatigue life of AA5083 samples decreases in manufactured sheets of the ECAR process. Also, cyclic softening has been observed in the ECARed sample. The fracture surfaces of samples after fatigue test have been observed with a scanning electron microscope. A comparison of fracture surfaces confirms that the crack growth was intergranular in annealed samples while it changes in ECARed samples to transgranular. 相似文献
16.
This paper presents single-line residual stress profiles for 8 mm 5083-H321 aluminium plates joined by gas metal arc (MIG) welding. The data were obtained by synchrotron diffraction strain scanning. Weld metal stresses (up to ~7 mm either side of the centreline) are quite scattered and unreliable because of the large epitaxial grain size in the fusion zone. Peak magnitude of the transverse stresses varies between +50 MPa (19% of parent plate proof strength) at the HAZ boundary to ?150 MPa (57% of PP proof strength) at the weld centreline. Equivalent values for longitudinal stresses are +90 MPa (34% of PP proof strength) some 22 mm from the weld centreline to ?120 MPa (45% of PP proof strength) at the weld centreline. Plate-to-plate variation in the as-welded transverse and longitudinal residual stress values across the weld toe region is around 40 MPa. The effect on residual stress and strain values of a sequence of applied fatigue loads was also considered and reported. 相似文献
17.
Friction stir butt welds in 6063-T4 aluminium alloy were obtained using square and two tapered tool pin profiles. Tensile tests at 0°, 45°, and 90° to the weld line, hardness contours in the weld cross-section, temperatures in the heat affected zones, cross-sectional macrographs, transmission electron micrographs, and X-ray diffraction studies were used to characterize the welds. In transverse weld specimen, tunnel defects appearing at higher weld speeds for tapered pin profiles, were found to result in mechanical instabilities, i.e. sharp drops in load–displacement curves, much before macroscopic necking occured. Further, in comparison to the base metal, a marked reduction in ductility was observed even in transverse specimen with defect free welds. Hardness contours in the weld cross-section suggest that loss in ductility is due to significant softening in heat affected zone on the retreating side. Transmission electron microscopy images demonstrate that while recovery and overaging are responsible for softening in the heat affected zone, grain size refinement from dynamic recrystallization is responsible for strengthening of the weld nugget zone. X-ray diffraction studies in the three weld zones: weld nugget zone, heat affected zone, and the base metal corroborate these findings. A weld zone model, for use in forming simulations on friction stir welded plates of naturally aged aluminium alloys, was proposed based on mechanical characterization tests. The model was validated using finite element analysis. 相似文献
18.
Friction stir lap welding (FSLW) experiments have been conducted to study the effects of tool positioning on microstructures formed in the Al-to-steel interface region and on joint strength, defined as maximum applied force over the width ( F m/ w s) of the test sample, of the welds. Various pin positioning and speed conditions were used in the FSLW experiments followed by microstructure examination on the interface regions and tensile-shear testing on the welds, including an examination on crack propagation in mixed stir zone. It was found that when the pin was close to the bottom steel piece, Al-to-steel reaction occurred resulting in intermetallic outbursts formed along the interface. This represents the case of incomplete metallurgical joint. When the pin was lowered to just reach the steel, a thin and continued interface intermetallic layer formed. Evidences and consideration on growth kinetics have suggested that the layer could only remain thin (≤2.5 μm) during FSLW. This layer could bear a high load during tensile-shear testing and the adjacent aluminium deformed and fractured instead. The resulting F m/ w s was high. When the pin penetrated to steel, F m/ w s reduced due to brittle fracture being dominant inside mixed stir zone. Evidences have shown that the amount of penetration and speed condition during FSLW do not have large effects on F m/ w s. 相似文献
19.
Ring-shaped specimens of 2054-T351 aluminium alloy were machined orthogonally on a lathe equipped with a quick-stop device at cutting speeds of 0.5–1.5 m s ?1 with tools having positive rake angles in the range 10–30°. The machined specimens were then fatigued at a selected stress and the resulting fatigue lives were compared with that of the virgin material. The surfaces of the specimens were examined using optical and scanning electron microscopy.The fatigue life of the machined specimens was found to increase with increasing cutting speed or tool rake angle. The fatigue life of the specimens machined at higher cutting speeds was higher than that of the virgin material, due to the presence of compressive residual stresses in the surface layers. At lower cutting speeds the surface damage was so severe that, in spite of the presence of compressive residual stresses in the surface layers, the fatigue life of the machined specimens was lower than that of the virgin material. 相似文献
20.
AbstractFriction stir processing was carried out on commercially pure aluminium, and a detailed microstructural characterisation was performed by electron backscattered diffraction and transmission electron microscopy. Friction stir processing resulted in significant grain refinement with narrow grain size distribution. The microstructure showed fine and equiaxed grains, with some ultrafine grains being also observed. Electron backscattered diffraction studies showed majority of the boundaries to be high angle, confirming the occurrence of dynamic recrystallisation (DRX). Transmission electron microscopy observations revealed dislocation arrangement into subgrain boundaries, grains having different dislocation densities and in different stages/degrees of recovery. Electron backscattered diffraction analysis also revealed a progressive transformation of sub-grain boundaries into high angle grain boundaries. A multimechanism of dynamic recovery, continuous DRX and discontinuous DRX seems to be operating during the process. The microstructure is not affected by changing the rotation speed from 640 to 800 rev min ?1, except that the grain size was marginally larger for higher rotational speed. 相似文献
|