首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the immediate and the long-term push-out bond strength of glass fiber posts (GFP) cemented with conventional or self-adhesive dual-curing resin cements, at different root depths. Prior to cementation, the GFP (Reforpost #3, Angelus) were etched with 37% phosphoric acid for 30 s followed by silane for 1 min. Thirty canine roots were divided into two groups (n = 15) according to resin cement type: ARC – dual resin cement (RelyX ARC/3M ESPE) combined with an three-step etch-and-rinse adhesive (Adper Scotch Bond Multi-Purpose Plus 3M/ESPE) or U200 – self-adhesive resin cement (RelyX U200/3M ESPE). The manufacturer’s instructions were followed. After 48 h, the roots were cross-sectioned at three different depths, resulting in serial slices corresponding to the cervical, middle, and apical root thirds. Slices were randomly divided into two groups, according to the period of water storage prior to push-out bond strength analysis: 48 h or 180 days. The data (MPa) were analyzed using three-way ANOVA for randomized blocks (p < 0.05), which showed no significant interaction between the three factors (p = 0.716). The main study factors were also proven not significant (cement: p = 0.711; time: 0.288; root third: p = 0.646). In conclusion, root depth, cement type (self-adhesive or conventional), and storage in water for 180 days did not influence the bond strength of GFP to intracanal dentin.  相似文献   

2.
The aims of this study were (a) to evaluate the influence of glass fiber post translucency on the hardness of a light-cure resin cement within the root canal; (b) to assess dentin bond strength at different root levels. Fifty human canine roots were randomly divided into five groups. Translucent posts (Exacto, Angelus; White Post DC, FGM; FRC Postec Plus, Ivoclar Vivadent) were used in three groups, opaque posts (Exacto Opaco, Angelus) were used in one group and no posts were used in the last group. The posts were cemented using a light-cure resin cement (Variolink N Base, Ivoclar Vivadent). The roots were cross-sectioned into slices (two from the cervical, two from the middle, and two from the apical thirds) which were then submitted to microhardness and push-out tests. Two-way analysis of variance and Tukey test were performed. Cement microhardness was significantly higher in the translucent post groups when compared to opaque posts and no post. At the apical third, the White Post DC and FRC Postec groups showed higher microhardness values than those in the Exacto Translucido group. The type of glass fiber post did not significantly influence bond strength values. White Post DC and FRC Postec Plus provided higher resin cement microhardness values, especially at the most apical thirds. Bond strength was not dependent on the type of post used. Failure mode analysis suggested superior cement curing when the translucent posts were used.  相似文献   

3.
Desensitizing agents can inhibit the bonding strength between dentin and adhesive resin cement. This study evaluated the effects of different desensitizing agents on the shear bond strength of adhesive resin cement to dentin. Sixty freshly extracted and caries free teeth were classified into five experimental groups, randomly (n?=?12). Each group was treated with a different desensitizing agent (Teethmate, Shield Force Plus, Admira Protect and Ultra-Ez) respectively, except for an untreated control group. After desensitizing agents and adhesive resin cement were applied to each dentin surface, all specimens were stored in incubator at 37?°C for 24?h. The shear bond strength was tested with a Universal testing machine at a 0.5?mm/min crosshead speed. Data were analysed by using a statistical software (SPSS 22). The results of the measurements were analysed by Kruskal Wallis test with Bonferroni correction and multiple comparisons were made by Wilcoxon test (p???.01). Specimens were examined by a scanning electron microscope, additionally. The Shield Force Plus showed significantly the highest shear bond strength compared with other groups (p?<?.01). Ultra-Ez showed the lowest shear bond strength (p?>?.01). There was no significant difference among Teethmate and Admira Protect groups (p?>?.01). Desensitizing agents containing resin monomers increased the bonding strength, however desensitizers containing calcium phosphate, potassium nitrate and fluoride did not effect the bonding strength of resin cement to dentin.  相似文献   

4.
The aim of the study is to evaluate the effectiveness and level of chemical interaction of self-adhesive resin cements (SRCs) according to the dentin region. One hundred eight sound human third molars and three SRCs were selected: Bifix SE (Voco), Maxcem Elite (Kerr), and RelyX U200 (3M ESPE). Ninety human molars were used for the bond strength test and 18 teeth for the X-ray diffraction (XRD) characterization. A flat surface of superficial, deep, or axial dentin was exposed. For bond strength evaluation, 90 indirect composite resin restorations (10 mm in diameter, 2.0 mm-thick) were built and cemented with one of the SRCs according to the manufacturer's instructions. The restored teeth were then cut into sticks with cross-sectional areas of 0.8 mm2 and tested in tensile at a speed of 0.5 mm/min (n=10). The results of bond strength were statistically analyzed by two-way ANOVA and Tukey's test (α=0.05). The fractured specimens were classified under SEM. The remaining teeth were further sectioned in order to build dentin fragments with 2.0 mm2 of area and 0.2 mm in thickness for XRD analysis. In general, significantly higher bond strength was found when bonding to axial and deep dentin compared to superficial dentin. Comparing the bonding effectiveness of the SRCs, taking into account the mean bond strength obtained in the 3 dentin regions, the study found no significant difference (p>0.05). Although RelyX U200 showed similar bond strength irrespective of the dentin region (p>0.05), the bonding results of the other 2 SRCs varied significantly (p<0.05). There was a higher incidence of cohesive failure in the SRCs for all groups. The XRD analysis detected different perceptual reductions of hydroxyapatite crystallinity for all SRCs, indicating a particular chemical interaction in each experimental condition. Thus, it can be concluded that the bond strength and chemical interaction of the SRCs can vary significantly according to the dentin region.  相似文献   

5.
This study assessed the effect of timing of core preparation and luting cement on adhesion of fiber-reinforced composite (FRC) posts on different levels of intraradicular dentin when cemented with either conventional dual-polymerized or self-adhesive resin cement. Single-rooted human teeth (N = 80) were endodontically treated and randomly divided into 2 groups (n = 40) according to resin cement: (a) Conventional dual resin cement (Variolink II, V) or (b) Self-adhesive resin cement (RelyX U200, R). They were further divided into two subgroups according to timing of core preparation (n = 20): (a) immediate (i) or (b) delayed (d). FRC posts (Cytec Blanco) were cemented and the roots were sliced into discs at the coronal, middle, and apical levels. Push-out tests were then performed in a Universal Testing Machine (1 mm/min). Data (MPa) were analyzed using three-way ANOVA and Tukey’s tests considering the factors ‘core preparation time’, ‘luting cement’, and ‘root level’ (α = 0.05). Type of luting cement (p < 0.001), time of core preparation (p < 0.001), and root level (p < 0.001) significantly affected the bond strength results. R cement was more significantly affected by core preparation time (Ri: 2.91 ± 1.1; Rd: 4.83 ± 1.68) compared to V cement (Vi: 2.92 ± 1.63; Vd: 2.65 ± 1.6) (p < 0.05). Coronal region demonstrated significantly higher bond strength values than those of middle and apical third in all groups (coronal: 4 ± 1.9; middle: 3.1 ± 1.4; apical: 2.4 ± 1.1) (p < 0.05). Adhesive failure between cement and dentin was the most frequent (64%) followed by adhesive failure between cement and post (18%). Delayed core preparation can improve bond strength of FRC posts to intraradicular dentin when cemented with self-adhesive cement compared to conventional dual-polymerized resin cement.  相似文献   

6.
Pin Lv  Meng Qu 《应用陶瓷进展》2019,118(1-2):16-22
ABSTRACT

The purpose of this study was to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and resin cement. Ceramic cylinders were divided randomly into 10 groups (n?=?10) according to different surface treatments (blank control; airborne particle abrasion; hot-etching for 10?min; hot-etching for 30?min; hot-etching for 60?min) and whether or not performed thermal cycling fatigue test. Flat enamel surfaces, were prepared from human permanent incisors and were bonded to the zirconia discs. All specimens were subjected to shear bond strength test by a universal testing machine. All data were statistically analysed using one-way analysis of variance and multiple comparison least significant difference tests (α?=?0.05). Hot-etching for 60?min treatment produced higher bond strengths than the other treatment. Surface treatment of zirconia with a hot-etching solution might enhance surface roughness and bond strength between zirconia and resin cement.  相似文献   

7.
Objectives: Evaluate the influence of composite resins viscosity and type of cure of the adhesive systems on the bond strength of composite resins submitted to artificial aging.

Methods: Dentin specimens (n = 240) were divided into 2 groups: Group GC: GrandioSO, and Group GF: GrandioSO Heavy Flow. These groups were subdivided into 6: FM: Futurabond M – light cured, FDCC: Futurabond Dual Cure – chemical cured, FDCL: Futurabond Dual Cure – light cured, CS3: Clearfil S3 – light cured, CDCC: Clearfil Dual Cure – chemical cured, and CDCL: Clearfil Dual Cure – light cured. Resin blocks were build up on the dentin surface. Half of samples on each group were cut to obtain resin/dentin sticks (1 × 1 mm). The other half was first submitted to thermomechanical aging. The dentin/resin sticks were submitted to microtensile bond strength test and the results were analyzed using three-way ANOVA and Tukey’s test (α = 5%).

Results: ANOVA showed significant influence for adhesive (p = 0.0000) and aging (p = 0.0001). No significant influence of the composite viscosity on bond strength was observed (ANOVA: p = 0.0861). For adhesive, the results of Tukey’s test (MPa) were CDCC: 13.44 (±5.13)a; FM: 14,01 (±2.71)a; CDCL: 14.51 (±4.98)a; FDCC: 18.66 (±7.13)b; CS3: 18.80 (±6.50)b; FDCL: 19.18 (±7.39)b. For aging: AGED: 14.99 (±6.32)a; NOT AGED: 17.87 (±5.97)b.

Conclusion: Composite resin viscosities did not influence on the bond strength. Type of cure of the adhesives had influence on the bond strength. Thermomechanical aging decreased the bond strength.  相似文献   


8.
The aim of the present study is to investigate the effect of aging type (thermocycling vs. water storage) and aged unit (block vs. stick) on the repair strength of resin composite to feldspathic porcelain in testing microtensile bond strength (μTBS). Ceramic specimens (N = 30) (10 × 5.7 × 4.5 mm3, Vita Mark II, Vita) were obtained from CAD–CAM blocks. One surface was etched with 10% HF and silanized. An adhesive was applied and resin composite blocks were constructed incrementally on the conditioned surface. The specimens were randomly divided into five groups (n = 6): Control (C): Non-aged; BTC: Blocks were thermocycled (5–55 °C, 6000 cycles); STC: Sticks were thermocycled; BS: Blocks aged in water storage (6 months) after themocycling; SS: Blocks aged in water storage (6 months) after thermocycling. After μTBS test, failure types were classified. Data (MPa) were statistically analyzed (1-way and Dunett and 2-way ANOVA, Tukey`s) (α = 0.05). Two-parameter Weibull distribution values including the Weibull modulus, scale (m), and shape (0) values were calculated. Aging type (p = 0.009) and aged unit (p = 0.000) significantly affected the results. Interaction terms were also significant (p = 0.000). Considering the stick level, there was no significant difference between thermocycling (STC: 25.7 ± 2.3) and water storage (SS: 25.3 ± 3.8) (p > 0.05) but the results were significantly higher when blocks were thermocycled (BTC: 31.6 ± 2.9) (p < 0.05). Weibull modulus and characteristic strength was the highest in BTC (m = 4.2; σo: 34.4) among all other groups (m = 3–3.9; σo: 14.6–28.5). Adhesive failures were common and cohesive failures occurred in less than 5% in all groups. Aging protocol was detrimental on durability of repair strength of resin composite to feldspathic porcelain. Exposing the sticks to either thermocycling or water storage aging should be considered in in vitro studies.  相似文献   

9.
The purpose of the present study was to evaluate the bond strength and the interaction morphology of self-adhesive resin luting cements (SLCs) to dentin prepared with different methods. Four SLCs were used: RelyX U100®, RelyX U200®, Clearfil SA Luting®, and SmartCem2®. A flat dentin surface of 40 human molars was exposed and each tooth was sectioned in four tooth-quarters, which were distributed into four groups according to the SLC used to cement indirect resin composite restorations. The tooth-quarters of each group were then distributed in four subgroups according to the method used for dentin preparation: flat-ended cylindrical fine-grit diamond, flat-ended cylindrical median-grit diamond, flat-ended cylindrical plain-cut tungsten carbide, or abraded with #600-grit SiC paper (control). The restored tooth-quarters were sectioned to obtain beams (0.8?mm2) and submitted to the microtensile bond strength test (n?=?10). The results were analyzed using two-way ANOVA/Tukey (α?=?0.05). Forty-four additional teeth were used for micromorphological investigation of the SLC/dentin interface and of the topographic aspect of the dentin surfaces after application of the SLCs. Only the bond strength of RelyX U200 was significantly influenced by the surface preparation. No interference was identified on the micromorphological aspect of the bonding interfaces. The topographic investigation of the dentinal surfaces showed that the SLCs were not able to effectively remove the smear layer and etch the underlying dentin, irrespective of the preparation method. So, the interference of the dentin preparation on the bond strength of SLCs is material dependent, but don’t influence the micromorphologic aspect of the interaction zone.  相似文献   

10.
The aim of this study was to evaluate the effect of cyclic loading on the bond strength of fiber posts and short fiber-reinforced composite (FRC) to root canal. One hundred single-rooted teeth were divided into two groups according to the material used for luting fiber posts: (1) Resin-core material (Gradia Core, GC Corp.) and (2) Short FRC (EverX Posterior, GC Corp.). Then the specimens were randomly assigned into three sub-groups according to the post material and the groups are indicated as follows: (1) Short FRC (EverX Posterior) used instead of post and core, (2) Fiber post (GC post, GC Corp.) cemented with resin-core (Gradia Core), (3) Fiber post (GC post, GC Corp.) cemented with short FRC (EverX Posterior), (4) Experimental fiber post cemented with resin-core (Gradia Core, GC Corp), (5) Experimental fiber post cemented with short FRC (EverX Posterior). Then the specimens were subdivided into a further two groups in accordance with the storage condition (cyclic loading and 24 h water storage-control group) (n = 10/per group). The micropush-out bond strength between root dentin and posts was measured. Data were analyzed using three-way ANOVA and Tukey HSD tests (α = 0.05). Micropush-out bond strength of the posts to dentin was significantly affected by the type of post material (p < 0.05). However, the load cycling and the resin-based luting agent used had no effect on bond strength values (p = 0.706 and p = 0.346, respectively).  相似文献   

11.
This study evaluated the effect of temporary cement residue removal methods from human coronary dentin on the bond strength of adhesively-luted zirconia on dentin. Forty non-carious human molars were embedded in acrylic resin and the dentin surfaces were exposed. Temporary acrylic crowns were provisionally cemented with zinc oxide cement without eugenol and stored in distilled water (37?°C/15?days). After crown removal, the excess temporary cement was removed from dentin according to one of the following cleaning methods: (n?=?8 per group): (a) air-water rinse (AW), (b) pumice paste (PP), (c) air-abrasion with aluminum oxide particles (Al2O3) (AA), (d) sodium bicarbonate spray (SB) or (e) glycine powder (CP). Forty zirconia cylinders were made and each cylinder was adhesively luted onto each tooth after adhesive resin (Scotch Bond Universal, 3?M ESPE-SBU) application using resin cement (RelyX Ultimate, 3?M ESPE) and photo-polymerized from each surface for 20?s. The bonded specimens were stored in distilled water (37?°C) for 90?days. The bonded interface was loaded under shear (1?mm/min). Data (MPa) were analyzed using 1-way ANOVA and Tukey's test (α?=?0.05). Mean bond strength was significantly affected by the cleaning method (p?=?0.0289). Cleaning with AA method resulted in significantly higher bond strength than with SB (p?<?0.05) but similar to CP, PP and AW (p?>?0.05). All cleaning methods were effective in removing temporary resin cement from dentin surfaces. Air-abrasion with aluminum oxide particles was more effective than with sodium bicarbonate spray promoting adhesion between zirconia and dentin.  相似文献   

12.
The bonding of resin cement to ceramic materials plays an important role in dentistry. The purpose of this study is to evaluate the effects of various surface treatments on the shear bond strength (SBS) of zirconia ceramic and metal alloy. A total of 60 specimens were prepared from Y-TZP ceramic and metal alloy. The specimens were divided into three subgroups (n = 10) that received different surface treatments for each material. An Er:YAG laser (ER), a femtosecond laser (FS), and air-borne particle abrasion (A) were employed as surface treatments. One specimen from each group was analyzed using a scanning electron microscope (SEM) at 500 x magnification after surface treatments. The self-adhesive resin cement was then bonded to the treated surfaces using a Teflon mold. The specimens were thermocycled for 5,000 cycles at 5–55 °C, and then the SBS test was performed. Kruskal–Wallis and Mann–Whitney U tests were used to determine the differences between the groups (p = 0.05), and failure modes were evaluated for each specimen. Statistical analyses revealed significant differences between the surface treatment methods. The mean SBS values of the air-borne particle-abraded groups were higher than those of the other groups. The femtosecond-irradiated groups of each material showed significantly higher SBS values than the Er:YAG-irradiated groups (p < 0.05). Within the limitations of this study, air-borne particle abrasion and the femtosecond laser were more effective than Er:YAG laser treatment.  相似文献   

13.
This study evaluated the pull-out strength of different glass fiber posts and measured volume of cement and voids in the cement in the root canal utilizing micro-computerized tomography (micro-CT) analysis after they were cemented with two different luting cements. Canine teeth (N = 40) were endodontically treated and randomly divided into four groups depending on the fiber post and the cement type (n = 10 per group) as follows: Group RU: (RelyX + RelyX U200), Group PU: (PINpost + RelyX U200), Group RF: (RelyX + FujiCEM 2), Group PF: (PINpost + FujiCEM 2). Each tooth was scanned using micro-CT and the percentage of cement and void volume at the coronal, middle, and apical levels was calculated. Pull-out tests were performed by applying tensile load parallel to the long axis of the posts (0.5 mm/min). Data were analyzed using, ANOVA, Kruskal–Wallis, and Mann–Whitney U tests (α = 0.05). Regardless of cement type, the percentage (%) of cement volume in the RelyX post groups (RU:31–36; RF:29–40) was significantly higher than that in the PINpost groups (PU:19–23; PF:18–22) (p < 0.05). The percentage of void volume at the PINpost groups (PU:6–11; PF:8–13) was significantly lower than that in the RelyX groups (RU:2; RF:3) (p < 0.05). No significant differences were observed in pull-out strength (N) between the four experimental groups (RU:358.8 ± 56.2; RF:299 ± 64.8; PU:311.9 ± 61.3; PF:293.1 ± 91.3) (p > 0.05). The micro-CT analysis demonstrated that the percentage of cement and void volumes vary depending on the type of fiber post and cement used. No correlation between cement, void volume, and pull-out strength was observed.  相似文献   

14.
Objective: The purpose of this study was to evaluate the effect of different surface shapes formed by femtosecond (FS) laser on zirconia (Y-TZP)-resin cement shear bond strength (SBS). Background data: All ceramic restoration is used as an alternative to metal-ceramic restorations, due to its better aesthetics, strength, and toughness properties. However, bond strength of restoration to tooth and other materials is effective to long term success of the restoration, and to achieve it surface treatment is required on ceramic surface. Materials and methods: Forty square-shaped zirconia samples were prepared and assigned to four groups of 10. The details of the groups are as follows: Group A, square-shaped recessed surface; Group B, square-shaped projection surface; Group C, circular-shaped recessed surface; Group D, circular-shaped projection surface. The SBSs values were performed with a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed statistically using analysis of variance (ANOVA) and Tukey HSD multiple comparisons tests. Results: The one-way ANOVA results on SBSs of the zirconia material bonded with resin cement revealed significant differences among the groups (p < 0.05). The Tukey HSD test results revealed that Group B and D had significantly higher SBS values than other groups (p < 0.05), but there were no significant differences between each other (p > 0.05). Additionally, Group A and C had significantly lower values than other groups (p < 0.05). Conclusions: Different surface shapes formed by FS laser provided a significant increase in SBSs. The SBS values of projection surfaces of circular and square-shapes are greater than that of recessed surfaces of circular and square-shapes.  相似文献   

15.
Effect of corrosion on bond in reinforced concrete under cyclic loading   总被引:3,自引:0,他引:3  
Cyclic loading can result in severe deterioration in the bond between reinforcing steel bar and the surrounding concrete, especially when the reinforcement is corroded. In this study, tests were carried out for bond stress-slip response of corroded reinforcement with concrete under cyclic loading. Parameters investigated include: corrosion level, confinement, bar type, and loading history. The results revealed that bond behaviour was significantly reduced under cyclic loading. Degradation in bond was significantly less for deformed bars than for smooth bars at the initial loading cycle, but the difference was diminished with loading. The bond reduction was more substantial for unconfined steel bars than for confined bars. The relatively high level of corrosion caused degradation primarily in the initial five cycles, the effect of corrosion being decreased with loading. It was also demonstrated that the cyclic bond stress-slip curves depended on loading history.  相似文献   

16.
Achieving adhesion between resin cement and zirconia requires pretreatment of the surface. This in vitro study aimed to evaluate the effect of femtosecond laser beam angle and the shape of the formed surfaces, on the roughness and shear bond strength (SBS) of resin cement to zirconia ceramic. Seventy Y-TZP ceramic specimens were divided into seven groups (n = 10). A femtosecond laser irradiation was performed on the ceramic surface of three shapes (spiral (SP), square (SQ) and circular (CI) and at two angles (30 and 90°) to give SP-30, SQ-30 and CI-30 and SP-90, SQ-90 and CI-90, respectively. After treatment, the surface roughness of all specimens was evaluated using a profilometer. One specimen from each group was analysed using a scanning electron microscope. The bonded specimens were thermocycled 5000 times and then an SBS test was performed. Kruskal-Wallis and Mann-Whitney U tests were used to analyse surface roughness and SBS values. The control group had statistically lower surface roughness (Ra) values than the treated groups (p < 0.05). SP-30 and SQ-30 laser treated specimens showed higher Ra values than the other specimens. Statistically significant SBS values (p = 0.000) were observed between the groups. All laser treated samples showed greater SBS compared to the control group. SP-30, SQ-30 and SQ-90 groups showed the highest SBS values. Within the limitations of this experimental study, the highest mean values for Ra and SBS were achieved with SP and SQ surfaces using a 30° angle laser beam.  相似文献   

17.
This study evaluated the repair microshear bond strength (μSBS) of water stored CAD/CAM resin composite under eight different surface treatments using a silane-containing universal adhesive in etch-and-rinse and self-etching modes. In total, 48 CAD/CAM resin composite slices were prepared from Lava Ultimate CAD/CAM blocks and stored in water for 6 months. The slices were assigned into 8 main groups, according to surface treatments (no treatment, no-treatment/silane, surface grinding, surface grinding/silane, sandblasting, sandblasting/silane, silica coating and silica coating/silane). Each main group was divided according to the universal adhesive application mode (either the etch-and-rinse mode or the self-etch mode). Each slice received 6 resin composite micro-cylinders (0.8 × 1 mm). Micro-shear bond strength was run at 0.5 mm/min crosshead speed until failure. Treated surfaces were examined using SEM. Bond strength data were statistically analyzed using Two-Way ANOVA/Tukey HSD post hoc test. Only ‘surface treatment’ significantly affected the repair μSBS (p ? 0.001). Parameters ‘Adhesive application mode’ and ‘surface treatment × adhesive mode’ showed no significant effect on μSBS (p = 0.458 and p = 0.286 respectively). Regardless of the adhesive application mode, silica coating showed the highest μSBS (21.6 ± 6.8 MPa), while sandblasting/silane showed the lowest μSBS (13.0 ± 6.1 MPa). Regardless of adhesive application mode, the use of silica coating to treat the water-stored CAD/CAM resin composite surfaces is crucial to improve the repair bond strength.  相似文献   

18.
The aim of this study was to investigate the effect of different surface pretreatment methods on the bond strength of veneering resin to polyetheretherketone (PEEK) based aesthetic frameworks. Five hundred and forty PEEK disks were fabricated and divided into 6 pretreatment groups (n = 90); (C) untreated control group, (B) airborne-particle abrasion, (S) silica coating, (L) etching with Er:YAG (erbium-doped yttrium aluminium garnet) laser, (LB) etching with Er:YAG laser and airborne-particle abrasion and (LS) etching with Er:YAG laser and silica coating. After topographical surface examinations, specimens were conditioned with adhesive and veneering resin was polymerized onto the PEEK specimens. Twenty-four hours after veneering, specimens were subjected to thermal aging. Afterwards, shear bond strength (SBS) tests were performed and the obtained data were analyzed with one-way ANOVA and Tukey test at a significance level of α = .05. Group B (1.58 ± 0.15 μm), Group L (1.79 ± 0.29 μm), Group LB (2.20 ± 0.23 μm) and Group LS (2.31 ± 0.52 μm) demonstrated significantly higher surface roughness (SR) values compared to Group C (1.03 ± 0.11 μm). Group B (10.97 ± 2.88 MPa), Group S (12.07 ± 2.82 MPa), Group LB (12.09 ± 2.08 MPa) and Group LS (13.14 ± 1.45 MPa) demonstrated significantly higher SBS values compared to Group C (6.35 ± 1.21 MPa). Airborne-particle abrasion, silica coating or their combined use with Er:YAG laser system establish durable bond between PEEK and resin; however, only Er:YAG laser treatment has no positive effect on resin-PEEK bond.  相似文献   

19.
Objectives: This study evaluated the effect of different root canal sealers on the push-out bond strength of tooth-colored posts to root dentin. Material and methods: Eighty human mandibular premolar teeth with single roots were decoronated and randomly divided into two groups according to post material: G1–G5: Cytec blanco; G6–G10: Cosmopost. In each group, the specimens were further subgrouped according to the filling material plus sealer (n = 8): G1, G6: Gutta-percha + AH Plus; G2, G7: Resilon + Epiphany SE; G3, G8: Gutta-percha + Sealite; G4, G9: Gutta-percha + iRoot SP; and G5, G10: control (unobturated). Cytec blanco and Cosmopost of 1.4 mm diameter were adhesively luted to samples using Variolink II. Push-out test was performed in a universal testing machine, and failure modes were examined under stereomicroscope. Data were analyzed with the two-way ANOVA and post hoc Tukey’s tests. Statistical significance was set to 0.05. Results: Roots obturated with AH Plus (3.48 ± 1.41 MPa), Sealite (3.47 ± 0.65 MPa), and Resilon (3.36 ± 1.23 MPa) had the lowest bond strength (p < 0.005). iRoot SP and control group samples showed the highest bond strength values (7.38 ± 0.89 MPa and 6.43 ± 1.16 MPa, respectively) (p < 0.05). Significant differences were observed among tooth-colored posts and sealers (p < 0.05). Adhesive failures were predominant in all groups (48%). Conclusions: When the resin cement Variolink II was used, the types of root canal filling materials and sealers could affect the retentions of the fiber/zirconium posts; the fiber post revealed the higher bond values than the zirconium post; and the calcium silicate-based sealer (iRoot SP) revealed the highest bond strengths.  相似文献   

20.
The purpose of this study was to determine the surface energy parameters of dental self-adhesive resin cements (SRCs) and to measure their bond strength to dentin. Six dental SRCs (RelyX Unicem Clicker, RU; Maxcem Elite, ME; BisCem, BC; Clearfil SA Luting, SA; Multilink Speed, MS; seT PP, SP) and one resin-modified glass ionomer cement (RelyX Luting 2, RL; control) were tested. Smear layer-covered bovine dentin was used as bonding substrate. Using the dynamic sessile drop method, surface energy, surface energy components, degree of hydrophobicity/hydrophilicity (expressed as ΔG sws using thermodynamic notation), and apparent surface energies for each material were calculated. The luting cements were bonded to the dentin and stored in water at 37?°C for 24?h prior to shear bond strength test (n?=?10). Pearson correlation analysis was applied to detect possible correlations between surface energy parameters and measured shear bond strength (α?=?0.05). RU, SA, and MS produced negative ΔG sws values (hydrophobic), whereas ME, BC, SP, and RL yielded positive ones (hydrophilic). RU had the highest value among all six SRCs tested, the value for MS being statistically equivalent (p?=?0.785). The base component, ΔG sws, and surface energy determined with water showed significant negative linear correlations with dentin bond strength (r/p?=??0.801/0.030, ?0.900/0.006, and ?0.892/0.007, respectively). These results suggest that bonding to smear layer-covered bovine dentin was governed by the base component and the hydrophobicity/hydrophilicity of the SRCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号