首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, novel adaptive sliding mode dynamic controller with integrator in the loop is proposed for nonholonomic wheeled mobile robot (WMR). The modified kinematics controller is used to generate kinematics velocities of WMR which are subsequently used as the input to adaptive dynamic controller. Actuator dynamics are also derived to generate actuator voltage of WMR through torque and velocity vectors. Stability of both kinematics and dynamic controller is presented using Lyapunov stability analysis. The proposed scheme is verified and validated using computer simulations for tracking the desired trajectory of WMR. The performance of proposed scheme is compared with standard backstepping kinematics controller and classical sliding mode control. In addition, the performance is further compared with standard backstepping kinematics controller with adaptive sliding mode controller without integrator. It is shown that the proposed scheme exhibits zero steady state error, fast error convergence and robustness in the presence of continuous disturbances and uncertainties.  相似文献   

2.
针对存在外部干扰的轮式移动机器人轨迹跟踪控制问题,提出一种固定时间轨迹跟踪控制方案.首先,对于轮式移动机器人的运动学误差模型,基于一种新颖的积分滑模面设计固定时间运动学速度控制器,使跟踪误差在固定时间收敛到原点所在的邻域内;其次,对于轮式移动机器人的动力学模型,设计固定时间干扰观测器对外部干扰信息进行估计,提出一种固定时间轨迹跟踪控制器,以确保动力学系统的固定时间稳定性,实现轮式移动机器人的高精度轨迹跟踪控制;最后,通过仿真结果验证所设计的轨迹跟踪控制方案的有效性.  相似文献   

3.
In this paper, the integrated kinematic and dynamic trajectory tracking control problem of wheeled mobile robots (WMRs) is addressed. An adaptive robust tracking controller for WMRs is proposed to cope with both parametric and nonparametric uncertainties in the robot model. At first, an adaptive nonlinear control law is designed based on input–output feedback linearization technique to get asymptotically exact cancellation of the parametric uncertainty in the WMR parameters. The designed adaptive feedback linearizing controller is modified by two methods to increase the robustness of the controller: (1) a leakage modification is applied to modify the integral action of the adaptation law and (2) the second modification is an adaptive robust controller, which is included to the linear control law in the outer loop of the adaptive feedback linearizing controller. The adaptive robust controller is designed such that it estimates the unknown constants of an upper bounding function of the uncertainty due to friction, disturbances and unmodeled dynamics. Finally, the proposed controller is developed for a type (2, 0) WMR and simulations are carried out to illustrate the robustness and tracking performance of the controller.  相似文献   

4.
针对含运动学未知参数以及动力学模型不确定的非完整轮式移动机器人轨迹跟踪问题,基于Radical Basis Function(径向基函数)神经网络,提出了一种鲁棒自适应控制器.首先,考虑移动机器人运动学参数未知的情况,提出了一种含自适应参数的运动学控制器,用以补偿参数不确定性导致的系统误差;其次,利用神经网络控制技术,对于机器人在移动中动力学模型不确定问题,提出了一种具有鲁棒性的动力学控制器,使得移动机器人可以在不知道具体动力学模型的情况下跟踪到目标轨迹;最后利用Lyapunov稳定性理论证明了整个系统的稳定性.通过数值仿真验证了所设计的控制器的可行性.  相似文献   

5.
侯明冬  王印松 《控制与决策》2020,35(6):1353-1360
针对有输入饱和约束的轮式移动机器人(WMR)的轨迹跟踪问题,提出一种抗饱和无模型自适应积分终端滑模控制方案.该方案基于紧格式动态线性化技术,构建WMR系统的在线数据驱动模型.在积分终端滑模控制器设计过程中,引入动态抗饱和补偿器,以解决WMR系统轨迹跟踪过程中执行器饱和问题.控制器设计仅利用控制系统的输入输出数据,与WMR系统模型信息无关.因此,针对不同类型的WMR系统,该方案均可实现.最后,通过仿真实验将所提出的方法与PID方法的控制效果进行对比,仿真结果表明,所提出的控制算法的跟踪误差更小且响应速度更快.  相似文献   

6.
This article presents the development of a Computed Torque Control (CTC) scheme for Cartesian velocity control of Wheeled Mobile Robots (WMRs). The literature presents extensive study on the need and suitability of the CTC scheme for robot arms. Many researchers have identified the benefits of using a CTC scheme for mobile robots. There is however very little information on CTC schemes for controlling mobile robots. The need for the CTC scheme stems from the fact that mobile robots (industrial AGVs) employing conventional velocity control schemes experience side slip due to suspended loads while negotiating curves, and the controller gains and accelerations need to be modified for changes in the dynamics. The structure of the proposed control scheme can be employed to control any mobile robot for which an inverse dynamic model exists, as a CTC scheme requires an inverse dynamic model to compute unique values for the motor current for a given trajectory. It is demonstrated that the existence of the inverse dynamic model is guaranteed for all differentially driven WMRs for all operating conditions, and is not affected by the number of castor wheels in the WMR. In the proposed CTC scheme, the linear and angular velocities of the WMR are controlled by adjusting the WMR accelerations, which are computed based on the motor torques required to follow a given trajectory. The motor torque is pre-computed based on a dynamic model of the mobile robotic system. The simulation and experimental results presented for a differentially driven WMR demonstrate that a computed-torque control scheme provides adaptive cruising and steering control for nominally tuned controller gains compared to a conventional velocity controller to achieve proper road following in the presence of changes in the dynamics. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
This paper addresses the cooperative adaptive consensus tracking for a group of multiple nonholonomic mobile robots, where the nonholonomic robot model is assumed to be a canonical vehicle having two actuated wheels and one passive wheel. By integrating a kinematic controller and a torque controller for the nonholonomic robotic system, a cooperative adaptive consensus tracking strategy is developed for the uncertain dynamic models using Lyapunov-like analysis in combination with backstepping approach and sliding mode technique. A key feature of the developed adaptive consensus tracking algorithm is the introduction of a directed network topology into the control constraints based on algebraic graph theory to characterise the communication interaction among robots, which plays an important role in realising the cooperative consensus tracking with respect to a specific common reference trajectory. Furthermore, a novel framework is proposed for developing a unified methodology for the convergence analysis of the closed-loop control systems, which can fully ensure the desired adaptive consensus tracking for multiple nonholonomic mobile robots. Subsequently, illustrative examples and numerical simulations are provided to demonstrate and visualise the theoretical results.  相似文献   

8.
This paper presents an adaptive robust control method for trajectory tracking and path following of an omni-directional wheeled mobile platform with actuators’ uncertainties. The polar-space kinematic model of the platform with three independent driving omnidirectional wheels equally spaced at 120 from one another is briefly introduced, and the dynamic models of the three uncertain servomotors mounted on the driving wheels are also described. With the platform’s kinematic model and the motors’ dynamic model associated two unknown parameters, the adaptive robust controller is synthesized via the integral backstepping approach. Computer simulations and experimental results are conducted to show the effectiveness and merits of the proposed control method in comparison with a conventional PI feedback control method.  相似文献   

9.
Homography-based visual servo tracking control of a wheeled mobile robot   总被引:4,自引:0,他引:4  
A visual servo tracking controller is developed in this paper for a monocular camera system mounted on an underactuated wheeled mobile robot (WMR) subject to nonholonomic motion constraints (i.e., the camera-in-hand problem). A prerecorded image sequence (e.g., a video) of three target points is used to define a desired trajectory for the WMR. By comparing the target points from a stationary reference image with the corresponding target points in the live image and the prerecorded sequence of images, projective geometric relationships are exploited to construct Euclidean homographies. The information obtained by decomposing the Euclidean homography is used to develop a kinematic controller. A Lyapunov-based analysis is used to develop an adaptive update law to actively compensate for the lack of depth information required for the translation error system. Experimental results are provided to demonstrate the control design.  相似文献   

10.
This article presents an adaptive scheme for controlling the end-effector impedance of robot manipulators. The proposed control system consists of three subsystems: a simple “filter” that characterizes the desired dynamic relationship between the end-effector position error and the end-effector/environment contact force, an adaptive controller that produces the Cartesian-space control input required to provide this desired dynamic relationship, and an algorithm for mapping the Cartesian-space control input to a physically realizable joint-space control torque. The controller does not require knowledge of either the structure or the parameter values of the robot dynamics and is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme represents a general and computationally efficient approach to controlling the impedance of both nonredundant and redundant manipulators. Furthermore, the method can be applied directly to trajectory tracking in free-space motion by removing the impedance filter. Computer simulation results are given for a planar four degree-of-freedom redundant robot under adaptive impedance control. These results demonstrate that accurate end-effector impedance control and effective redundancy utilization can be achieved simultaneously by using the proposed controller.  相似文献   

11.
In this paper, a robust adaptive tracking controller is proposed for a nonholonomic wheeled mobile robot (WMR) in the presence of unknown wheel slips. The role of the Gaussian wavelet network in this proposed controller is to approximate unknown smooth nonlinear dynamic functions due to no prior knowledge of the dynamic parameters of the WMR. In addition, one robust law is employed at the kinematic level so as to compensate the harmful effects of the unknown wheel slips, and another robust law is used at the dynamic level to overcome total uncertainties caused by dynamic parameter variations, external disturbances, etc. The stability of the whole closed-loop control system is proved in accordance with Lyapunov theory and Barbalat's lemma. Ultimately, the simulation results are shown in comparison with those of another control method under the same condition to confirm the validity and efficiency of this proposed control method.  相似文献   

12.
This paper presents a new type of control framework for dynamical stochastic systems, called statistic tracking control (STC). The system considered is general and non-Gaussian and the tracking objective is the statistical information of a given target probability density function (pdf), rather than a deterministic signal. The control aims at making the statistical information of the output pdfs to follow those of a target pdf. For such a control framework, a variable structure adaptive tracking control strategy is first established using two-step neural network models. Following the B-spline neural network approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. The dynamic neural network (DNN) is employed to identify the unknown nonlinear dynamics between the control input and the weights related to the integrated function. To achieve the required control objective, an adaptive controller based on the proposed DNN is developed so as to track a reference trajectory. Stability analysis for both the identification and tracking errors is developed via the use of Lyapunov stability criterion. Simulations are given to demonstrate the efficiency of the proposed approach.   相似文献   

13.
针对具有未知外界扰动和系统不确定性集总未知非线性的四旋翼飞行器,提出了一种采用自适应不确定性补偿器的自适应动态面轨迹跟踪方法.通过将四旋翼飞行器系统分解为位置、欧拉角和角速率3个动态子系统,使各子系统虚拟控制器设计能充分考虑欠驱动约束;结合动态面控制技术,通过采用一阶低通滤波器,避免对虚拟控制信号求导;进而设计自适应不确定性补偿器,处理未知外界扰动和系统不确定性,最终确保闭环控制系统的稳定性、跟踪误差一致最终有界和系统所有状态信号有界.仿真研究和实验结果验证了本文提出控制方法的有效性和优越性.  相似文献   

14.
针对模型参数未知和存在有界干扰的非完整移动机器人的轨迹跟踪控制问题,本文提出了一种鲁棒自适应轨迹跟踪控制器方法.非完整移动机器人的控制难点在于它的运动学系统是欠驱动的.针对这一难点,本文利用横截函数的思想,引入新的辅助控制器,使得非完整移动机器人系统不再是一个欠驱动系统,缩减了控制器设计的难度,进而利用非线性自适应算法和参数映射方法构造李雅谱诺夫函数.通过李雅普诺夫方法设计控制器和参数自适应器,从而使得非完整移动机器人的跟随误差任意小,即可以任意小的误差来跟随任意给定的参考轨迹.仿真结果证明了方法的有效性.  相似文献   

15.
Abstract

This work investigates the leader–follower formation control of multiple nonholonomic mobile robots. First, the formation control problem is converted into a trajectory tracking problem and a tracking controller based on the dynamic feedback linearization technique drives each follower robot toward its corresponding reference trajectory in order to achieve the formation. The desired orientation for each follower is selected such that the nonholonomic constraint of the robot is respected, and thus the tracking of the reference trajectory for each follower is feasible. An adaptive dynamic controller that considers the actuators dynamics in the design procedure is proposed. The dynamic model of the robots includes the actuators dynamics in order to obtain the velocities as control inputs instead of torques or voltages. Using Lyapunov control theory, the tracking errors are proven to be asymptotically stable and the formation is achieved despite the uncertainty of the dynamic model parameters. In order to assess the proposed control laws, a ROS-framework is developed to conduct real experiments using four ROS-enabled mobile robots TURTLEBOTs. Moreover, the leader fault problem, which is considered as the main drawback of the leader–follower approach, is solved under ROS. An experiment is conducted where in order to overcome this problem, the desired formation and the leader role are modified dynamically during the experiment.  相似文献   

16.
This paper presents the design of a differentiable, kinematic control law that achieves global asymptotic tracking. In addition, we also illustrate how the proposed kinematic controller provides global exponential tracking provided the reference trajectory satisfies a mild persistency of excitation (PE) condition. We also illustrate how the proposed kinematic controller can be slightly modified to provide for global asymptotic regulation of both the position and orientation of the mobile robot. Finally, we embed the differentiable kinematic controller inside of an adaptive controller that fosters global asymptotic tracking despite parametric uncertainty associated with the dynamic model. Experimental results are also provided to illustrate the performance of the proposed adaptive tracking controller.  相似文献   

17.
This paper presents a unified motion controller for mobile manipulators which not only solves the problems of point stabilization and trajectory tracking but also the path following problem. The control problem is solved based on the kinematic model of the robot. Then, a dynamic compensation is considered based on a dynamic model with inputs being the reference velocities to the mobile platform and the manipulator joints. An adaptive controller for on-line updating the robot dynamics is also proposed. Stability and robustness of the complete control system are proved through the Lyapunov method. The performance of the proposed controller is shown through real experiments.  相似文献   

18.
针对BPnn(BP神经网络)在复杂多输入情况下,样本训练速度慢,不能满足实时性要求的缺点,提出了一种把神经网络分割成若干子网分别进行训练来获取更高计算效率的方法。将改进的BPnn应用于移动机器人在未知参数和不确定干扰下的轨迹跟踪控制问题中,提出了一种运动控制器和动力学控制器相结合的改进的计算力矩控制方法,用后退算法设计运动学控制器,用改进的BPnn优化动力学控制器。通过MATLAB数值仿真证明了算法的有效性和正确性。  相似文献   

19.
杨芳  王朝立 《信息与控制》2012,41(1):57-62,68
基于视觉反馈和标准链式形式,研究了一类不确定非完整移动机器人的轨迹跟踪控制问题.首先,利用针孔摄像机模型,提出了一种新的基于视觉伺服的移动机器人运动学跟踪误差模型.基于这个模型,在具有不确定视觉参数的情形下,利用back-stepping技术,设计出了一种新的自适应动态反馈跟踪控制器,实现了全局渐近的轨迹跟踪,并通过李亚普诺夫方法严格证明了闭环系统的稳定性和估计参数的有界性.仿真结果证明了所提出的控制器的有效性.  相似文献   

20.
针对带有执行机构饱和约束与外部干扰的轮式移动机器人,提出了一种基于T-S模糊模型的轨迹跟踪方法.利用机器人运动特性和参考轨迹建立轨迹跟踪的误差系统并将其作T-S模型描述.通过求解具有LMI约束的半定规划问题,对每个线性子系统单独设计满足控制约束与H∞性能约束的状态反馈控制器,并在PDC(动态平行分配补偿)设计框架下构建全局控制器,最后证明闭环系统的李雅普诺夫稳定性.仿真结果验证了该方法的有效性和可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号