首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study evaluated the effect of two desensitizer agents with different contents and Nd:YAG laser irradiation on the shear bond strength (SBS) of adhesive resin cements to dentin. New treatment options of Nd:YAG laser irradiation and tetracalcium phosphate-containing agent applications were compared with routinely used glutaraldehyde-containing agents. One hundred and twenty human, caries-free premolars were embedded in acrylic resin blocks 2 mm below the cementoenamel junction. Buccal surfaces of the teeth were ground to expose dentin. The specimens were randomly assigned into three different surface treatments (desensitizing agents, Nd:YAG laser) and the control, then into three different adhesive resin cement applications (n = 10). Resin cements (Panavia SA cement (PA), Panavia SA cement with Clearfil Universal Bond (PACU), and Multilink N (MN)) were applied to the conditioned teeth surfaces using Teflon tubes. The specimens were thermocycled (5000 cycles, 5–55 ± 1 °C, dwell time 30 s). The SBS test was performed in all groups. The results were submitted to two-way ANOVA and Tukey HSD tests (p < .05). Further, SEM analysis was performed on the dentin surfaces. SBS values were significantly difference among the surface treatment groups and also among adhesive resin cement groups (p < .05). The specimen cemented with PA showed lower SBS values than PACU- and MN-applied specimens. The highest SBS value was obtained in the Nd:YAG laser group which was cemented with PACU cement. The lowest SBS value was obtained in the control group which was cemented with PA cement. In addition, SEM evaluation revealed that desensitizing agents and Nd:YAG laser occluded dentin tubules.  相似文献   

2.
The aim of this study was to evaluate the immediate and the long-term push-out bond strength of glass fiber posts (GFP) cemented with conventional or self-adhesive dual-curing resin cements, at different root depths. Prior to cementation, the GFP (Reforpost #3, Angelus) were etched with 37% phosphoric acid for 30 s followed by silane for 1 min. Thirty canine roots were divided into two groups (n = 15) according to resin cement type: ARC – dual resin cement (RelyX ARC/3M ESPE) combined with an three-step etch-and-rinse adhesive (Adper Scotch Bond Multi-Purpose Plus 3M/ESPE) or U200 – self-adhesive resin cement (RelyX U200/3M ESPE). The manufacturer’s instructions were followed. After 48 h, the roots were cross-sectioned at three different depths, resulting in serial slices corresponding to the cervical, middle, and apical root thirds. Slices were randomly divided into two groups, according to the period of water storage prior to push-out bond strength analysis: 48 h or 180 days. The data (MPa) were analyzed using three-way ANOVA for randomized blocks (p < 0.05), which showed no significant interaction between the three factors (p = 0.716). The main study factors were also proven not significant (cement: p = 0.711; time: 0.288; root third: p = 0.646). In conclusion, root depth, cement type (self-adhesive or conventional), and storage in water for 180 days did not influence the bond strength of GFP to intracanal dentin.  相似文献   

3.
The aims of this study were (a) to evaluate the influence of glass fiber post translucency on the hardness of a light-cure resin cement within the root canal; (b) to assess dentin bond strength at different root levels. Fifty human canine roots were randomly divided into five groups. Translucent posts (Exacto, Angelus; White Post DC, FGM; FRC Postec Plus, Ivoclar Vivadent) were used in three groups, opaque posts (Exacto Opaco, Angelus) were used in one group and no posts were used in the last group. The posts were cemented using a light-cure resin cement (Variolink N Base, Ivoclar Vivadent). The roots were cross-sectioned into slices (two from the cervical, two from the middle, and two from the apical thirds) which were then submitted to microhardness and push-out tests. Two-way analysis of variance and Tukey test were performed. Cement microhardness was significantly higher in the translucent post groups when compared to opaque posts and no post. At the apical third, the White Post DC and FRC Postec groups showed higher microhardness values than those in the Exacto Translucido group. The type of glass fiber post did not significantly influence bond strength values. White Post DC and FRC Postec Plus provided higher resin cement microhardness values, especially at the most apical thirds. Bond strength was not dependent on the type of post used. Failure mode analysis suggested superior cement curing when the translucent posts were used.  相似文献   

4.
Objective: This study investigated the effect of saliva contamination and cleansing effect of a self-etching primer (SEP), phosphoric acid (PA), chlorhexidine (CHX), and ethanol (EtOH) on the microtensile bond strength (μTBS) of a fiber post cemented with a self-adhesive resin cement (SAC) to root canal dentin.

Material and methods: Sixty human lower premolar roots were randomly divided into 10 groups: (1) no saliva contamination, no cleansing (Control); (2) no saliva contamination, cleansing with SEP (NC-SEP); (3) no saliva contamination, cleansing with PA (NC-PA); (4) no saliva contamination, cleansing with CHX (NC-CHX); (5) no saliva contamination, cleansing with EtOH (NC-EtOH); (6) with saliva contamination, no cleansing (SC-NC); (7) with saliva contamination, cleansing with SEP (SC-SEP); (8) with saliva contamination, cleansing with PA (SC-PA); (9) with saliva contamination, cleansing with CHX (SC-CHX); (10) with saliva contamination, cleansing with EtOH (SC-EtOH). After cementation of posts, the roots were transversally sectioned to obtain six slices (n = 36) followed by μTBS test. Data were analyzed with ANOVA and Tukey HSD tests (p = 0.05).

Results: Saliva contamination and cleansing methods had a significant effect on μTBS values (p < 0.0001). All cleansing agents improved bond strengths when compared with Control and SC-NC. Cleansing with CHX and ethanol showed lower μTBS values than phosphoric acid and SEP, regardless of saliva contamination (p < 0.05).

Conclusions: Saliva contamination negatively affected bonding performance of SAC to root dentin. However; SEP, PA, CHX and EtOH can be used on contaminated dentin surfaces to optimize bonding performance of self-adhesive cements.  相似文献   

5.
The purpose of this study was to determine the surface energy parameters of dental self-adhesive resin cements (SRCs) and to measure their bond strength to dentin. Six dental SRCs (RelyX Unicem Clicker, RU; Maxcem Elite, ME; BisCem, BC; Clearfil SA Luting, SA; Multilink Speed, MS; seT PP, SP) and one resin-modified glass ionomer cement (RelyX Luting 2, RL; control) were tested. Smear layer-covered bovine dentin was used as bonding substrate. Using the dynamic sessile drop method, surface energy, surface energy components, degree of hydrophobicity/hydrophilicity (expressed as ΔG sws using thermodynamic notation), and apparent surface energies for each material were calculated. The luting cements were bonded to the dentin and stored in water at 37?°C for 24?h prior to shear bond strength test (n?=?10). Pearson correlation analysis was applied to detect possible correlations between surface energy parameters and measured shear bond strength (α?=?0.05). RU, SA, and MS produced negative ΔG sws values (hydrophobic), whereas ME, BC, SP, and RL yielded positive ones (hydrophilic). RU had the highest value among all six SRCs tested, the value for MS being statistically equivalent (p?=?0.785). The base component, ΔG sws, and surface energy determined with water showed significant negative linear correlations with dentin bond strength (r/p?=??0.801/0.030, ?0.900/0.006, and ?0.892/0.007, respectively). These results suggest that bonding to smear layer-covered bovine dentin was governed by the base component and the hydrophobicity/hydrophilicity of the SRCs.  相似文献   

6.
This study evaluated the influence of Er,Cr:YSGG laser surface conditioning on push-out bond strength of different root posts to the root dentin. Extracted (N = 27, n = 9 per group) and endodontically treated human mandibular premolars were prepared to receive the posts. Three types of posts, namely quartz fiber (D), glass fiber (S), and zirconium dioxide post (C) were luted with resin cement. The posts were randomly assigned to one of the surface conditioning method: (a) No conditioning, control (L0), (b) Er,Cr:YSGG laser at 175 mJ, 3.5 W for 60 s (L1), and (c) at 225 mJ, 4.5 W for 60 s, with 60 μs pulse duration and repetition rate was 20 Hz (L2) irradiation. Six sections (two coronal, two middle, and two apical) were made in each tooth yielding to 1 mm thick specimens. The specimens were stored in distilled water at 37?°C for 24 h and push-out bond strength (MPa) was tested in a Universal Testing Machine (1 mm/min). Data were analyzed using Kruskall–Wallis and Dunns`s post hoc tests (α = 0.05). In group D, both laser treated groups (L1:16.16 ± 19.89; L2:8.24 ± 9.26) presented significantly less bond strength compared to control group (L0:28.3 ± 16.8) (p < 0.001). Mean push-out bond strength values did not significantly differ according to the root segments (coronal, middle, and apical) (p = 0.106). Application of Er,Cr:YSGG laser, with the parameters tested, did not increase the bond strength of zirconium glass fiber and zirconium oxide posts. Laser surface conditioning decreased the bond strength of quartz fiber posts in the root canal.  相似文献   

7.
This study evaluated the degree of conversion (DC) and adhesion of methacrylate-based resin cements to glass fiber posts at different regions of intraradicular dentin. Single-rooted teeth (N?=?24, n?=?12 per group) were cut at the cement–enamel junction (CEJ), endodontically treated and post space (depth?=?8 mm) was prepared. Teeth were randomly divided into two groups according to the resin cements: (a) Group ML: methacrylate-based cement with phosphonic acid acrylate (Multilink Automix, Ivoclar Vivadent); (b) Group RXU: methacrylate-based cement with phosphoric acid acrylate (RelyX Unicem 2 Automix, 3 M ESPE). Fiber-reinforced composite root posts (RelyX Fiber Post, 3 M ESPE) were cemented according to the manufacturers’ instructions of the resin cements. Root slices of 2-mm thickness (n?=?3 per tooth) were cut below the CEJ 1, 3, and 5 mm apically. The DC of each section was analyzed with micro-Raman spectrometer and push-out test was performed in the Universal Testing Machine (0.5 mm/min). After debonding, all specimens were analyzed using optical microscope to categorize the failure modes. While data (MPa) were statistically evaluated using Kruskal Wallis, Mann–Whitney U tests for DC data 3-way ANOVA and Tukey’s tests were used (α?=?0.05). Regardless of the resin cement type, the mean push-out bond strength results (MPa), were significantly higher for the coronal slices (ML: 9.1?±?2.7; RXU: 7.3?±?4.1) than those of the most apical ones (ML: 7?±?4.9; RXU: 2.89?±?1.5) (p?=?0.002). Resin cement type and (p?p?=?0.002) significantly affected the DC values, while the interaction terms were not significant (p?=?0.606). Overall, DC was significantly higher for ML (67?±?8.2%) than RXU (26?±?8.8%) (p?相似文献   

8.
The aim of this study was to evaluate over time the bond strength of dual-cure and self-adhesive resin cements used for bonding fiberglass posts following irrigation with different solutions. Ninety roots from single-rooted premolars were selected and divided into 6 groups (n = 15) according to the resin cement, dual-cure or self-adhesive (RelyX ARC and RelyX U100) or the endodontic irrigant used (2% chlorhexidine digluconate - CH, 1% sodium hypochlorite - SH and deionized distilled water – control). Following post cementation, the roots were cross-sectioned in order to obtain two slices from each root third (cervical, mid and apical). The specimens were stored for 7 or 180 days in water and the push-out bond strength test applied. The data was analyzed using three-way ANOVA and Tukey Kramer. The interaction endodontic irrigants-resin cement vs. storage time was significant (p = 0.008), where 7 days of storage induced no difference between the groups, however, after 180 days, the groups for which CH or SH combined with RelyX U100 were used showed higher bond strength values than RelyX ARC, regardless of the irrigant solution. There was no difference between the use of RelyX ARC after 7 and 180 days of storage. For Rely X U100 180 days of storage increased the push-out bond strength when either CH or SH was used. The dual-cure and self-adhesive resin cements associated with CH or SH demonstrated similar immediate bond strength performance. The self-adhesive cement, however, showed improved bond strength over time when either irrigant was used.  相似文献   

9.
This study evaluated the adhesion of conventional and self-adhesive resin cements to indirect resin composite (IRC) using different surface conditioning methods. Cylindrical IRC specimens (N = 192) were randomly assigned to four surface conditioning methods (n = 8 per group): (a) Control group, (b) Hydrofluoric acid, (c) Tribochemical silica-coating, and (d) 50 μm Al2O3 air-abrasion. Specimen surfaces were finished using silicon carbide papers up to 600 grit under water irrigation, rinsed and dried. Direct composite blocks were bonded to IRC specimens using three conventional resin cements (Multilink, Panavia F2.0, and Resicem) and three self-adhesive resin cements (RelyX U100, Gcem, Speed Cem). Specimens were subjected to shear bond strength test in a Universal Testing Machine (0.5 mm/min). Failure types were categorized as mixed, adhesive and cohesive. Data were analyzed using 2-way ANOVA and Tukey’s tests. Two-parameter Weibull modulus, scale (m) and shape (0) were calculated. The bond strength results (MPa) were significantly affected by the surface conditioning method (p < 0.0001) and cement type (p < 0.001). For Panavia F2.0, Resicem, air-abrasion with 50 μm Al2O3 significantly increased the results (22.6 ± 6.5, 26.2 ± 6.5, respectively) compared to other conditioning methods (13.6 ± 1.4–21.9 ± 3.1) but for Multilink, hydrofluoric acid etching (20.5 ± 3.5) showed significantly higher results (p < 0.01). For the self-adhesive resin cements, air-abrasion with 50 μm Al2O3 significantly increased the results compared to other conditioning methods, except for RelyX U100 (p < 0.05). After air-abrasion with Al2O3, Gcem, (11.64), RelyX U100 (9.05), and SpeedCem (8.29) presented higher Weilbul moduli. Exclusively cohesive failure in the IRC was observed with RelyX U100 and Speedcem after Al2O3 air-abrasion.  相似文献   

10.
The effect of various post materials luted with different resin luting cements on microleakage in root canals was studied in the present study. Sixty carious and crack-free premolars were prepared using a step-back technique and obturated with gutta-percha. The roots were randomly divided into six groups (n = 10). Two different post types, glass fiber reinforced posts and zirconium posts (ZP), were cemented three different resin adhesive cements (Panavia F 2.0, Smartcem 2, and Variolink II) in the root canals. All specimens were thermal cycled and stored in the methylene blue solution for one week. The roots were sectioned horizontally into three sections: apical, middle, and coronal. The occlusal direction of each section was digitally photographed under a stereomicroscope. Dye penetration area was calculated as the methylene blue-infiltrated surface divided by total dentin area. After the two-way Anova test results, Tukey HSD and Bonferroni tests were used for multiple comparisons. According to the test results, ZP luted with Panavia F showed the best microleakage results and glass fiber posts luted with smartcem 2 showed the most unsuccessful microleakage results (p = 0.146).  相似文献   

11.
This study evaluated the adhesion of resin cements to zirconia after saliva contamination using resin cements with different chemistries. Zirconia discs (N?=?240, n?=?10 per group) were randomly divided into three groups: (a) C: No contamination (Control), (b) S: Contamination with saliva, (c) S?+?AA: Contamination with saliva followed by air-abrasion (CoJet). While half of the specimens were not conditioned, the other half were conditioned with 37.5% H3PO4 for 60?s. After rinsing, all specimen surfaces were silanized (Monobond Plus). Resin cements based on either methacrylate (Variolink II–VL) or MDP monomer (Panavia 21-PN) were polymerized on the substrates. The specimens were randomly divided into two further groups to be tested either after (a) 24?h dry storage at 37?°C or (b) thermocycling (×5000, 5–55?°C). Microshear bond (MSB) tests were conducted in a Universal Testing Machine and failure types were analyzed. Data were analyzed using Univariate analysis and Tukey’s tests (alpha = 0.05). While saliva contamination, 37.5% H3PO4 application (p?<?.001) and aging (p?<?.05) significantly affected the bond results, cement type did not show significant difference after aging (p?>?.05). Adhesive strength of PN (1.2–4.4?MPa) on saliva contaminated and etched zirconia was more stable than that of VL (0–2.8?MPa). After aging, bond strength results decreased the most with VL (3–100%) compared to PN (32–71%) but the decrease was less in the air-abraded groups after aging (VL: 3%; PN: 32%). Exclusively adhesive failures were experienced in all groups.  相似文献   

12.
Desensitizing agents can inhibit the bonding strength between dentin and adhesive resin cement. This study evaluated the effects of different desensitizing agents on the shear bond strength of adhesive resin cement to dentin. Sixty freshly extracted and caries free teeth were classified into five experimental groups, randomly (n?=?12). Each group was treated with a different desensitizing agent (Teethmate, Shield Force Plus, Admira Protect and Ultra-Ez) respectively, except for an untreated control group. After desensitizing agents and adhesive resin cement were applied to each dentin surface, all specimens were stored in incubator at 37?°C for 24?h. The shear bond strength was tested with a Universal testing machine at a 0.5?mm/min crosshead speed. Data were analysed by using a statistical software (SPSS 22). The results of the measurements were analysed by Kruskal Wallis test with Bonferroni correction and multiple comparisons were made by Wilcoxon test (p???.01). Specimens were examined by a scanning electron microscope, additionally. The Shield Force Plus showed significantly the highest shear bond strength compared with other groups (p?<?.01). Ultra-Ez showed the lowest shear bond strength (p?>?.01). There was no significant difference among Teethmate and Admira Protect groups (p?>?.01). Desensitizing agents containing resin monomers increased the bonding strength, however desensitizers containing calcium phosphate, potassium nitrate and fluoride did not effect the bonding strength of resin cement to dentin.  相似文献   

13.
Purpose: To compare the shear bond strengths of six different porcelain laminate veneer (PLV) materials cemented to enamel with two different MDP-containing resin cements. Materials and methods: Totally 120 disc specimens were fabricated with In-Ceram alumina (ICA), Turkom-CeraTM (TCR), IPS Empress (IPS), IPS Empress-II (IPS2), Finesse (FNS), and Ceramco-3 (CER) ceramic systems (n = 20). Sixty specimens were cemented with self-adhesive resin cement (Clearfil SA), and 60 specimens were cemented with self-etch resin cement (Panavia F2.0) to enamel. Thus, 120 PLV–enamel specimens were assigned to 12 experimental groups (ICA/Pv, ICA/Cf, TCR/Pv, TCR/Cf, IPS/Pv, IPS/Cf, IPS2/Pv, IPS2/Cf, CER/Pv, CER/Cf). Shear force was applied on PLV–enamel interfaces until failure. Obtained data were statistically analyzed with ANOVA and t-tests. Results: Obtained shear bond strength values (SBSV) ranged as follows, respectively; TCR/Cf (7.70 MPa), FNS/Cf (7.57 MPa), TCR/Pv (6.91 MPa), ICA/Pv (5.05 MPa), CER/Pv (4.75 MPa), IPS2/Cf (4.66 MPa), FNS/Pv (4.43 MPa), IPS2/Pv (3.97 MPa), CER/Cf (3.82 MPa), IPS/Pv (3.62 MPa), ICA/Cf (3.59 MPa), IPS/Cf (3.11 MPa). Highest SBSV were obtained in TCR groups (7.70 MPa for TCR/Cf and 6.91 MPa for TCR/Pv) and lowest SBSV were obtained in IPS groups (3.11 MPa for IPS/Cf and 3.62 MPa for IPS/Pv) in both resin cements. No significant bond strength difference was found between two resin cements. Conclusions: TCR groups showed highest SBSV; lowest SBSV were obtained with both IPS PLVs. The resin cement type did not significantly affect the bond strength value of a ceramic type, except for the Finesse system.  相似文献   

14.
Er,Cr:YSGG lasers are currently being investigated for disinfecting the root canal treatment. The aim of this study was to compare the effects of various irrigation protocols on push-out bond strength of fiber posts. Fifty maxillary anterior teeth were divided into five groups (n = 10) according to the protocol that applied into the post space. Group-1: distilled water, Group-2: 5% NaOCl, Group-3: 2% CHX, Group-4: Er,Cr:YSGG laser (1.5 W, 20 Hz, 85 air, 75 water, 26.7 J/cm2), Group-5: Er,Cr:YSGG laser (1.25 W, 50 Hz, 34 air, 24 water, 12.7 J/cm2). Fiber posts were cemented with resin cement. The remaining part of the root, three slices were obtained from each specimen and push-out test was performed. One-way ANOVA and Duncan’s test at a 5% level of significance were used for the statistical analysis. Post space irradiation with Er,Cr:YSGG laser (1.5 W 20 Hz, 85 air, 75 water, 26.7 J/cm2) increases push-out bond strength of fiber post to root canal dentin. Further investigations are needed to establish and optimize ER,Cr:YSGG laser parameters to increase the push-out bond strength of fiber posts.  相似文献   

15.
The aim of this study was to determine the effect of 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based primer on the shear bond strengths of thermally aged self-adhesive and conventional adhesive resin cements and zinc phosphate cement to zirconia and lithium disilicate substructures. Sixty zirconia (Z) and 60 lithium disilicate (L) disk specimens were cut from ceramic blocks. Each group was divided into six subgroups (n = 10). Half of the specimens of each ceramic group were treated with primer (P) and the other half was remained untreated. Three types of cement were applied: zinc phosphate cement [(ZPC) (Hoffmann Harmonic Shades)]; self-adhesive resin cement [(SAC) (RelyX U200)]; conventional adhesive resin cement [(CAC) (C&B)]. The specimens were subjected to thermal aging procedure for 1 week under 37 °C water bath. Shear bond strength (SBS) was determined using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with three-way (ANOVA). Pairwise comparisons and interactions between groups were analyzed by using Tukey’s simultaneous confidence intervals. There was no significant difference between the SBS values of SAC-Z (11,47 ± 0,47) and SAC-ZP (11,39 ± 0,42) (p > 0.05). However, the SBS values of SAC-L (12.34 ± 0,55) and SAC-LP (12,50 ± 0,49) were significantly higher than those of SAC-Z and SAC-ZP (p < 0.00). The use of primer significantly increased the SBS value of CAC-ZP (8,05 ± 0,55) when compared to the SBS value of CAC-Z (3,53 ± 0,41) (p < 0.00). Resin cement that contains methacrylate monomers with phosphoric ester functional groups exhibited reliable bond to zirconia. However, the use of an MDP-based primer may not further improve its bond strength.  相似文献   

16.
This study assessed the effect of timing of core preparation and luting cement on adhesion of fiber-reinforced composite (FRC) posts on different levels of intraradicular dentin when cemented with either conventional dual-polymerized or self-adhesive resin cement. Single-rooted human teeth (N = 80) were endodontically treated and randomly divided into 2 groups (n = 40) according to resin cement: (a) Conventional dual resin cement (Variolink II, V) or (b) Self-adhesive resin cement (RelyX U200, R). They were further divided into two subgroups according to timing of core preparation (n = 20): (a) immediate (i) or (b) delayed (d). FRC posts (Cytec Blanco) were cemented and the roots were sliced into discs at the coronal, middle, and apical levels. Push-out tests were then performed in a Universal Testing Machine (1 mm/min). Data (MPa) were analyzed using three-way ANOVA and Tukey’s tests considering the factors ‘core preparation time’, ‘luting cement’, and ‘root level’ (α = 0.05). Type of luting cement (p < 0.001), time of core preparation (p < 0.001), and root level (p < 0.001) significantly affected the bond strength results. R cement was more significantly affected by core preparation time (Ri: 2.91 ± 1.1; Rd: 4.83 ± 1.68) compared to V cement (Vi: 2.92 ± 1.63; Vd: 2.65 ± 1.6) (p < 0.05). Coronal region demonstrated significantly higher bond strength values than those of middle and apical third in all groups (coronal: 4 ± 1.9; middle: 3.1 ± 1.4; apical: 2.4 ± 1.1) (p < 0.05). Adhesive failure between cement and dentin was the most frequent (64%) followed by adhesive failure between cement and post (18%). Delayed core preparation can improve bond strength of FRC posts to intraradicular dentin when cemented with self-adhesive cement compared to conventional dual-polymerized resin cement.  相似文献   

17.
The aim of the study is to evaluate the effectiveness and level of chemical interaction of self-adhesive resin cements (SRCs) according to the dentin region. One hundred eight sound human third molars and three SRCs were selected: Bifix SE (Voco), Maxcem Elite (Kerr), and RelyX U200 (3M ESPE). Ninety human molars were used for the bond strength test and 18 teeth for the X-ray diffraction (XRD) characterization. A flat surface of superficial, deep, or axial dentin was exposed. For bond strength evaluation, 90 indirect composite resin restorations (10 mm in diameter, 2.0 mm-thick) were built and cemented with one of the SRCs according to the manufacturer's instructions. The restored teeth were then cut into sticks with cross-sectional areas of 0.8 mm2 and tested in tensile at a speed of 0.5 mm/min (n=10). The results of bond strength were statistically analyzed by two-way ANOVA and Tukey's test (α=0.05). The fractured specimens were classified under SEM. The remaining teeth were further sectioned in order to build dentin fragments with 2.0 mm2 of area and 0.2 mm in thickness for XRD analysis. In general, significantly higher bond strength was found when bonding to axial and deep dentin compared to superficial dentin. Comparing the bonding effectiveness of the SRCs, taking into account the mean bond strength obtained in the 3 dentin regions, the study found no significant difference (p>0.05). Although RelyX U200 showed similar bond strength irrespective of the dentin region (p>0.05), the bonding results of the other 2 SRCs varied significantly (p<0.05). There was a higher incidence of cohesive failure in the SRCs for all groups. The XRD analysis detected different perceptual reductions of hydroxyapatite crystallinity for all SRCs, indicating a particular chemical interaction in each experimental condition. Thus, it can be concluded that the bond strength and chemical interaction of the SRCs can vary significantly according to the dentin region.  相似文献   

18.
Objectives: This study evaluated the effect of different root canal sealers on the push-out bond strength of tooth-colored posts to root dentin. Material and methods: Eighty human mandibular premolar teeth with single roots were decoronated and randomly divided into two groups according to post material: G1–G5: Cytec blanco; G6–G10: Cosmopost. In each group, the specimens were further subgrouped according to the filling material plus sealer (n = 8): G1, G6: Gutta-percha + AH Plus; G2, G7: Resilon + Epiphany SE; G3, G8: Gutta-percha + Sealite; G4, G9: Gutta-percha + iRoot SP; and G5, G10: control (unobturated). Cytec blanco and Cosmopost of 1.4 mm diameter were adhesively luted to samples using Variolink II. Push-out test was performed in a universal testing machine, and failure modes were examined under stereomicroscope. Data were analyzed with the two-way ANOVA and post hoc Tukey’s tests. Statistical significance was set to 0.05. Results: Roots obturated with AH Plus (3.48 ± 1.41 MPa), Sealite (3.47 ± 0.65 MPa), and Resilon (3.36 ± 1.23 MPa) had the lowest bond strength (p < 0.005). iRoot SP and control group samples showed the highest bond strength values (7.38 ± 0.89 MPa and 6.43 ± 1.16 MPa, respectively) (p < 0.05). Significant differences were observed among tooth-colored posts and sealers (p < 0.05). Adhesive failures were predominant in all groups (48%). Conclusions: When the resin cement Variolink II was used, the types of root canal filling materials and sealers could affect the retentions of the fiber/zirconium posts; the fiber post revealed the higher bond values than the zirconium post; and the calcium silicate-based sealer (iRoot SP) revealed the highest bond strengths.  相似文献   

19.
This study investigated the adhesion of resin composite to mineral trioxide aggregate based cements after different chemical and physico-chemical surface conditioning methods. Mineral trioxide aggregate based cements (Biodentine, ProRoot MTA, Imicryl MTA) were embedded in Teflon disks (N?=?180). After storing at 37?°C at 100% humidity for 72?h, substrate surfaces were polished using silicon carbide papers. Specimens were allocated to 3 groups to be conditioned with one of the following (n?=?15 per group): a) Adhesive resin (Clearfil SE Bond, CSE), b) Adhesive resin (Adper Single Bond 2, SB2), c) air-abrasion with 30?μm alumina coated with silica?+?silane?+?adhesive resin (ALB), d) no surface conditioning, control group (CON). Microhybrid resin composite (Filtek Z250) was applied on the conditioned substrate surfaces and photo-polymerized. After storage at 37?°C at 100% humidity for 24?h, adhesive interfaces were loaded under shear (1?mm/min) in a universal testing machine. After debonding failure types were analyzed. Data were analyzed using 2-way ANOVA and Tukey’s test (alpha = 0.05). SBS results were significantly affected by surface conditioning (p?<?0.05) and materials (p?<?0.05). Interaction terms were significant (p?<?0.05). Biodentine-ALB resulted in significantly higher SBS values (3.96?±?1.24) compared to those of other combinations, while ALB and SB2 resulted in no significant difference for ProRoot MTA and Imicryl MTA (p?>?.05). CSE (1.36?±?0.5- 1.98?±?0.76) did not significantly increase SBS for all MTA materials compared to the control group (0.8?±?0.52 – 2?±?0.91) (p?>?9.05). While CON groups resulted in exclusively adhesive failures, ALB presented the highest incidence of mixed failures for all materials tested (60–100%).  相似文献   

20.
PurposeTo verify the influence of different instruments and operators on the bonding interfacial area and on the push-out bond strength values.Material and methodsFifteen anterior human teeth (n=15) were selected, cleaned and standardized to 15 mm length. Root canals were prepared in 12 mm and the fiber posts were cemented using the RelyX U-100 cement. Three slices were obtained per tooth (N=45) and submitted to the push-out bond strength test. The bonding interfacial area (mm2) of each specimen was calculated based on the disc slice dimensions: coronal and apical diameter and height. The bonding area of each specimen was used to calculate the bond strength (Mpa). The dimensions were analyzed by different operators, using two instruments: G1 – Operator A with a digital caliper; G2 – Operator A with a stereomicroscope; G3 – Operator B with a digital caliper; G4 – Operator B with a digital stereomicroscope; G5 – Operator C with a digital caliper; G6 – Operator C with a stereomicroscope. The mean area was submitted to inter-operator and intra-operator analyses, while the mean area and mean of bond strength were submitted to the 2-way ANOVA with repeated measures and the Tukey test (α=0.05).ResultsThe inter-operator kappa was 0.83 to the digital caliper and 0.91 to the stereomicroscope, while the intra-operator kappa was 0.76. The operator and the measurement instrument influenced the interfacial bonding area (p=0.000 and p=0.001) and the push-out bond strength values (p=0.000 and p=0.000, respectively) of the disc slices.ConclusionThe final push-out bond strength values are influenced by the measuring instrument and by the measurer operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号