首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛇形机器人(以下简称机器蛇)因其身体细长和环境适应能力强的优点被广泛应用于不适宜人类工作的领域.介绍了一种仿生机器蛇的设计与制作.设计时选用体积小、动力足的P0090舵机作为机器蛇驱动,Atmega128和Atmega8单片机作为控制器.HPD8506A作为无线数据发射模块,完成PC与机器蛇的数据传输.根据舵机尺寸逆向设计关节、蛇头和蛇尾,采用正交关节连接方式装配,实现机器蛇蜿蜒、蠕动等多步态的移动,加载的红外避障传感器保障了机器蛇能安全躲避障碍物.此系统的研究为今后机器蛇在狭小管道或高空缆绳上攀爬并完成检测任务奠定基础.  相似文献   

2.
This paper reports the design of a new hexapod walking robot, ASURA I, inspired by the physical features of a harvestman’s behavior. ASURA I has a special mobile form with one compact body and much longer legs than conventional hexapod walking robots. This form enhances the walking performance of the robot on rocky or uneven terrain. Here, we present the design and analysis of the leg mechanism, body structure design, gait planning, and prototype development. The long legs (relative to the body) are managed by special parallel link mechanisms, which powerfully and effectively drive the leg joints. The leg mechanism is analyzed by its kinematics, singularity, and static characteristics. The leg length and weight of ASURA I is 1.3 m and 27 kg, respectively. The alternating tripod and wave gaits of ASURA I are successfully demonstrated in a series of walking experiments.  相似文献   

3.
This paper deals with the development of a stair-climbing mobile robot with legs and wheels. The main technical issues in developing this type of robot are the stability and speed of the robot while climbing stairs. The robot has two wheels in the front of the body to support its weight when it moves on flat terrain, and it also has arms between the wheels to hook onto the tread of stairs. There are two pairs of legs in the rear of the body. Using not only the rorational torque of the arms and the wheels, but also the force of the legs, the robot goes up and down stairs. It measures the size of stairs when going up and down the first step, and therefore the measurement process does not cause this robot to lose any time. The computer which controls the motion of the robot needs no complicated calculations as other legged robots do. The mechanism of this robot and the control algorithm are described in this paper. This robot will be developed as a wheelchair with a stair climbing mechanism for disabled and elderly people in the near future. This work was presented, in part, at the International Symposium on Artificial Life and Robotics, Oita, Japan, February 18–20, 1996  相似文献   

4.
ABSTRACT

In this study, the control of a two-wheeled stair-climbing inverted pendulum robot and its climbing motion are analyzed and discussed. The robot adopts a state-feedback controller with a feed-forward constant to stabilize the body and achieve step-climbing motion. The control parameter is considered based on the dynamic model motion on a flat surface and the static model of motion on the step. For climbing stairs with a narrow step tread, a constant torque is applied to reduce the space required for recovering the body stability after climbing. The stability of the robot is numerically analyzed by analyzing the orbital stability of its limit cycle. The stability analysis shows that the control method can achieve a stable stair-climbing motion. The effectiveness of the control method is demonstrated through an experiment. The result indicates that the robot can climb the stairs, and the required time for climbing a single step is approximately 1.8?s.  相似文献   

5.
ABSTRACT

In this paper, we propose the design of a single-wheeled robot capable of climbing stairs. The robot is equipped with the proposed climbing mechanism, which enables it to climb stairs. The mechanism has an extremely simple structure, comprised of a parallel arm, belt, harmonic drive, and pulley. The proposed climbing mechanism has the advantage of not requiring an additional actuator because it can be driven by using a single actuator that drives the wheel. The robot is equipped with a control moment gyroscope to control the stability in a lateral direction. Experimental results demonstrate that the robot can climb stairs with a riser height of 12–13?cm and a tread depth of 39?cm at an approximate rate of 2 to 3 s for each step.  相似文献   

6.
陈程  冷洁  李清都  侯运锋  吕涛 《机器人》2022,44(4):453-462
针对移动机器人在户外运动中所遇到的台阶、楼梯等复杂地形,设计了一种可攀爬楼梯的多模式全向移动机器人。通过切换运动模态,该机器人既能像传统移动机器人一样快速移动,又具备了足式机器人的越障能力。首先,分析并构建了多模式全向移动机器人的运动学模型;其次,研究了该机器人越障能力和质心位置之间的关系并计算了该机器人可以翻越台阶的...  相似文献   

7.
It is necessary for legged robots to walk stably and smoothly on rough terrain.In this paper,a desired landing points(DLP) walking method based on preview control was proposed in which an off-line foot motion trace and an on-line modification of the trace were used to enable the robot to walk on rough terrain.The on-line modification was composed of speed modification,foot lifting-off height modification,step length modification,and identification and avoidance of unsuitable landing terrain.A planner quadruped robot simulator was used to apply the DLP walking method.The correctness of the method was proven by a series of simulations using the Adams and Simulink.  相似文献   

8.
This work investigates adaptive stiffness control and motion optimization of a snake-like robot with variable stiffness actuators. The robot can vary its stiffness by controlling magnetorheological fluid(MRF) around actuators. In order to improve the robot's physical stability in complex environments, this work proposes an adaptive stiffness control strategy. This strategy is also useful for the robot to avoid disturbing caused by emergency situations such as collisions. In addition, to obtain optimal stiffness and reduce energy consumption, both torques of actuators and stiffness of the MRF braker are considered and optimized by using an evolutionary optimization algorithm. Simulations and experiments are conducted to verify the proposed adaptive stiffness control and optimization methods for a variable stiffness snake-like robots.  相似文献   

9.
Quadruped robots working in jungles, mountains or factories should be able to move through challenging scenarios. In this paper, we present a control framework for quadruped robots walking over rough terrain. The planner plans the trajectory of the robot's center of gravity by using the normalized energy stability criterion, which ensures that the robot is in the most stable state. A contact detection algorithm based on the probabilistic contact model is presented, which implements event-based state switching of the quadruped robot legs. And an on-line detection of contact force based on generalized momentum is also showed, which improves the accuracy of proprioceptive force estimation. A controller combining whole body control and virtual model control is proposed to achieve precise trajectory tracking and active compliance with environment interaction. Without any knowledge of the environment, the experiments of the quadruped robot SDUQuad-144 climbs over significant obstacles such as 38 cm high steps and 22.5 cm high stairs are designed to verify the feasibility of the proposed method.  相似文献   

10.
Abstract

One of the most important missions for robots is to operate in severe environments, and these situations require robots to have ‘toughness’ which can overcome large shocks, degraded communication quality, unexpected condition, and other critical accidents. Although there are many kinds of approaches to realize tough robotic systems, developing a tough actuators is one of the key technologies for them. We focus on hydraulic actuators and attempt to develop a tough robotic actuator with greater toughness than the electromagnetic actuators used in conventional robotic systems. In general, hydraulic actuators have enough toughness for severe environments, but their controllability and lightness are insufficient for robot systems. Herein, we propose novel hydraulic actuators that realizes lightweight with a multidirectional-forging magnesium alloy and have high controllability by low friction pistons. Prototypes were developed to examine the fundamental characteristics of the actuators and compare the two approaches for the low-friction pistons: one is based on a packing mechanism using an elastic restoring pressure, and the other utilizes a fluid-bearing technology. After basic experiments, the prototype was applied to a robotic leg to verify their potential in actual robotic systems. The robotic leg successfully jumped 260 mm in height with 21 MPa.  相似文献   

11.
针对矿井地貌环境的非结构性和复杂性,为了提高救灾机器人的越障能力和实际救援能力,分析了轮式救援机器人行走系统的力学系统原理,提出了机器人六轮行走机构的设计方案。六轮移动机器人采用电动推杆为升降系统提供动力;采用独立悬挂系统,减小了车身的倾斜和震动;采用集中控制-分布驱动方式,有利于运动机构性能的发挥;能够根据地形特征调整自己的底座结构,有很强的越障能力和对非结构化地形的适应能力。  相似文献   

12.
Stairs overcoming is a primary challenge for mobile robots moving in human environments, and the contradiction between the portability and the adaptability of stair climbing robot is not well resolved. In this paper, we present an optimal design of a flip-type mobile robot in order to improve the adaptability as well as stability while climbing stairs. The kinematic constraints on the flip mechanism are derived to prevent undesired interferences among stairs, wheels and main body during climbing stairs. The objective function is proposed according to the traction demand of the robot during stair-climbing motion for the first time and the value of the objective function is calculated though kinetic analysis. The Taguchi method is using as the optimization tool because of its simplicity and cost-effectiveness both in formulating an objective function and in satisfying multiple constraints simultaneously. The performance of the robot under the optimal parameters is verified through simulations and experiments.  相似文献   

13.
A novel continuum robotic cable aimed at applications in space   总被引:1,自引:0,他引:1  
We introduce a new class of long and thin continuum robots intended for use in space applications. This ‘cable’ robot is a next-generation version of the current state of the art (NASA’s ‘Tendril’). The article describes the key practical limitations of the mechanical design of ‘Tendril’. We introduce the design specifics of our novel concept for a next-generation device with significantly enhanced performance. Equipped with a light and compact motor-encoder actuation mechanism, the new design has improved compliance and possesses a concentric backbone arrangement which is tendon-actuated and spring-loaded. A new forward kinematic model is developed extending the established models for constant-curvature continuum robots, to account for the new design feature of controllable compression (in the hardware). The model is validated by performing experiments with a three-section prototype of the design. The new model is found to be effective as a baseline to predict the performance of such long and thin continuum ‘cable’ robots.  相似文献   

14.
Compact structure and flexibility is normally considered as a pair of incompatible characteristics for legged microrobots. Most robots choose complex structure of multi-joint legs to attain the flexibility, while some microrobots have poor flexibility for miniaturization. To attain a microrobot with both compact structure and flexible locomotion, we designed a novel type of biomimetic locomotion employing ionic conducting polymer film (ICPF) actuators as one-DOF legs. We developed several prototype microrobots using this locomotion. In this paper, a microrobot using this biomimetic locomotion, named Walker-3, utilizing six ICPF actuators with two-DOF motion is developed. It is 30 mm in length, 55 mm in width and 8 mm in height (in static state). Experimental results indicate that Walker-3 can attain 6 mm/s of walking speed and 7.1 deg/s of rotating speed and climb on a 30° ascent at a speed of 0.5 mm/s with control signal of 10 V, 0.5 Hz. It is also suitable for uncertain terrain, such as climbing on a stairs less than 2 mm high and striding over a pit less than 5 mm wide. It has better flexibility, balance and load ability than its predecessors. We compared it with some legged microrobots and the result shows a microrobot with this biomimetic locomotion can have both compact structure and multi DOF locomotion.  相似文献   

15.
针对搜救机器人对多信息获取与处理、远程监控与运动控制的实时高性能需求,设计了以ARM微处理器STM32为核心、多传感器融合的自主柔性变形蛇形机器人控制系统,实现了机器人的远程监控与运动控制、多传感器环境信息采集等功能。整个控制系统具有良好的扩展性、硬件可裁剪性。通过模拟灾难废墟场景实验,结果表明:蛇形机器人控制系统可实现多信息的实时准确无线通信,在不同的环境中,具有良好的多步态运动稳定性和自主移动性能。  相似文献   

16.
In this paper, we address the autonomous control of a 3D snake-like robot through the use of reinforcement learning, and we apply it in a dynamic environment. In general, snake-like robots have high mobility that is realized by many degrees of freedom, and they can move over dynamically shifting environments such as rubble. However, this freedom and flexibility leads to a state explosion problem, and the complexity of the dynamic environment leads to incomplete learning by the robot. To solve these problems, we focus on the properties of the actual operating environment and the dynamics of a mechanical body. We design the body of the robot so that it can abstract small, but necessary state-action space by utilizing these properties, and we make it possible to apply reinforcement learning. To demonstrate the effectiveness of the proposed snake-like robot, we conduct experiments; from the experimental results we conclude that learning is completed within a reasonable time, and that effective behaviors for the robot to adapt itself to an unknown 3D dynamic environment were realized.  相似文献   

17.
The diverse locomotion modes and physiology of biological snakes make them supremely adapted for their environment. To model the noteworthy features of these snakes we have developed a snake-like robot that has no forward direction driving force. In order to enhance the ability of our robot to adapt to the environment, in this study we investigate the creeping locomotion of a snake-like robot on a slope. A computer simulator is presented for analysis of the creeping locomotion of the snake-like robot on a slope, and the environmentally-adaptable body shape for our robot is also derived through this simulator.  相似文献   

18.
Robotics researchers have studied robots that can follow trails laid by other robots. We, on the other hand, study robots that leave trails in the terrain to cover closed terrain repeatedly. How to design such ant robots has so far been studied only theoretically for gross robot simplifications. In this article, we describe for the first time how to build physical ant robots that cover terrain and test their design both in realistic simulation environments and on a Pebbles III robot. We show that the coverage behavior of our ant robots can be modeled with a modified version of node counting, a real-time search method. We then report on first experiments that we performed to understand their efficiency and robustness in situations where some ant robots fail, they are moved without realizing this, the trails are of uneven quality, and some trails are destroyed. Finally, we report the results of a large-scale simulation experiment where ten ant robots covered a factory floor of 25 by 25 meters repeatedly over 85 hours without getting stuck.  相似文献   

19.
Tracked robots operating on rough terrain are often equipped with controllable flippers to help themselves overcome large obstacles or gaps. How to automate the control of these auxiliary flippers to achieve autonomous traversal remains an open question, which still necessitates inefficient manual teleoperation in practice. To tackle this problem, this article presents a geometry-based motion planning method for an articulated tracked robot to self-control its flippers during autonomous or semiautonomous traversal over rough terrain in urban search and rescue environments. The proposed method is developed by combining dynamic programming with a novel geometry-based pose prediction method of high computational efficiency, which is applicable for typical challenging rescue terrains, such as stairs, Stepfields, and rails. The efficient pose prediction method allows us to make thousands of predictions about the robot poses at future locations for given flipper configurations within the onboard sensor range. On the basis of such predictions, our method evaluates the entire discretized configuration space and thereby determines the optimal flipper motion online for a smooth traversal over the terrain. The overall planning algorithm is tested with both simulated and real-world robots and compared with a reinforcement-learning-based method using the RoboCup Rescue Robot League standard testing scenarios. The experimental results show that our method enables the robots to automatically control the flippers, successfully go over challenging terrains, and outperform the baseline method in passing smoothness and robustness to different terrains.  相似文献   

20.
Traditional lattice-type reconfigurable robots can only achieve the flow-style locomotion with low efficiency. Since gaits of chain-type robots are proved to be efficient and practical, this paper presents a novel lattice distortion approach for lattice-type reconfigurable robots to achieve locomotion gaits of chain-type robots. Using this approach, the robotic system can be actuated by local lattice distortion to move as an ensemble. In this paper, a rule that makes the lattice distortion equivalent to joint rotation is presented firstly. Then, a kind of module structure is designed according to requirements of the lattice distortion. Finally, a motion planning for achieving locomotion is developed, which works well in physics-based simulations of completing a serpentine locomotion gait of a snake-like robot and a tripod gait of a hexapod robot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号