首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a multilayer barrier thin film, based on polyvinylidene difluoride (PVDF)–silicon dioxide (SiO2), has been fabricated on a PET substrate through a novel method of joint fabrication techniques. The inorganic SiO2 thin film was deposited using a roll-to-roll atmospheric atomic layer deposition system (R2R-AALD), while the organic PVDF layer was deposited on the surface of SiO2 through the electrohydrodynamic atomization (EHDA) technique. The multilayer barrier thin films exhibited very good surface morphology, chemical composition, and optical properties. The obtained values for arithmetic surface roughness and water contact angle of the as-developed multilayer barrier thin film were 3.88 nm and 125°, respectively. The total thickness of the multilayer barrier thin film was 520 nm with a high optical transmittance value (85–90%). The water vapor transmission rate (WVTR) of the barrier thin film was ~?0.9?×?10?2 g m?2 day?1. This combination of dual fabrication techniques (R2R-AALD and EHDA) for the development of multilayer barrier thin films is promising for gas barrier applications.  相似文献   

2.
In this paper the dielectric properties of crack‐free, Bi12SiO20 thin films were investigated. The films were prepared on Pt/TiO2/SiO2/Si and corundum substrates using the sol–gel method. The formation of a pure Bi12SiO20 phase was observed at a temperature of 700°C. The Bi12SiO20 thin films, heat treated at 700°C for 1 h, had a dense microstructure with an average roughness (Ra) of 50 nm. The dielectric properties of the film were characterized by using both low‐ and microwave‐frequency measurement techniques. The low‐frequency measurements were conducted with a parallel capacitor configuration. The dielectric constant and dielectric losses were 44 and 7.5 × 10?3, respectively. The thin‐film dielectric properties at the microwave frequency were measured using the split‐post, dielectric resonator method (15 GHz) and the planar capacitor configuration (1–5 GHz). The dielectric constant and the dielectric losses measured at 15 GHz were 40 and 17 × 10?3, respectively, while the dielectric constant and the dielectric losses measured with the planar capacitor configuration were 39 and 65 × 10?3, respectively.  相似文献   

3.
Lead?free ferroelectric BaSn0.15Ti0.85O3 (BTS) thin films are grown on Pt-coated Si substrates by magnetron sputtering at 650?°C, the effect of sputtering pressure on the microstructural, surface morphological, dielectric properties and leakage characteristic is systematically investigated. XRD analysis shows the crystallinity of BTS thin films with perovskite structure can be improved by appropriate control of the sputtering pressure. The surface morphology analyses reveal that grain size and roughness can be affected by sputtering pressure. The BTS thin films prepared at sputtering pressure of 3.0?Pa exhibit a low dispersion parameter of 0.006, a medium dielectric constant of ~357, a high dielectric tunability of 65.7%@?400?kV/cm and a low loss tangent of 0.0084?@?400?kV/cm. Calculation of figure of merit (FOM) displays a high value of 84.1, and the measurement of leak current shows a very low value of 4.39?×?10–7 A/cm2 at 400?kV/cm. The results indicate that BTS thin film deposited sputtering pressure of 3.0?Pa is an excellent candidate for electrically steerable applications  相似文献   

4.
The structure, morphology and surface roughness of Bi12TiO20 (BTO) thin films grown on R-sapphire by pulsed laser deposition (PLD) were studied at different substrate temperatures, target-substrate distances, oxygen pressures and laser-pulse repetition rates. Although the substrate temperature seems to be the most important experimental parameter, the gas pressure and the target–substrate distance played important role on the phase formed and film thickness, with a significant effect of the laser-pulse repetition rate on the films thickness and preferred orientation of the deposited film. Single-phase γ-Bi12TiO20 was obtained on substrates at 650?°C, while several BTO metastable phases were observed in films deposited on substrates at temperatures between 500 and 600?°C. By the first time, thin films of pure and textured δ-Bi12TiO20 were successfully growth on substrates at 450?°C. When annealed, all the films deposited at lower temperatures resulted in the thermodynamically stable γ-Bi12TiO20.  相似文献   

5.
Hydrothermal preparation of BaTiO3 thin films   总被引:1,自引:0,他引:1  
In preparing BaTiO3 thin films under hydrothermal conditions, the effects of concentrations of nutrient and mineralizer, and reaction time on crystallinity, grain size, surface roughness, and film thickness were investigated. Experiments were performed in the ranges of 0.1-1.5M BaCl2 · 2H2O or Ba(OH)2 · 8H2O and 0-1.5 M KOH with varying reaction time from 0.16 to 8 hours at 140 °C. Bimodal dispersion of crystalline grains on the surface of BaTiO3 thin films was predicted through nucleation and crystal growth reaction. As the concentrations of nutrient and/or mineralizer increased, grain size of the thin film became smaller, but more uniform and compact. When 0.4 M Ba(OH)2 · 8H2O was used with 1.0 M KOH, a reaction time longer than 4 hours was required in order to fabricate BaTiO3 thin films.  相似文献   

6.
The influence of film roughness on the wetting properties of vacuum-deposited polytetrafluorethylene (PTFE) thin films has been investigated using atomic force microscopy (AFM) and contact angle goniometry. Surface roughness has been characterized by atomic force microscopy in terms of RMS roughness (Rq) and fractal dimensions. A contact angle correlation with surface roughness, as determined by AFM, is evident from these results, which are discussed on the basis of wetting theory. The results also confirm that the high water contact angles (as high as 150°) recently observed at the surface of a new water repulsive coating material (mixture of PTFE and binder) are because of surface roughness. Such measurements clarify the effect of nanometer-size surface asperities on the wetting properties of hydrophobic coating.  相似文献   

7.
High-k oxide dielectric films have attracted intense interest for thin-film transistors (TFTs). However, high-quality oxide dielectrics were traditionally prepared by vacuum routes. Here, amorphous high-k alumina (Al2O3) thin films were prepared by the simple sol-gel spin-coating and post-annealing process. The microstructure and dielectric properties of Al2O3 dielectric films were systematically investigated. All the Al2O3 thin films annealed at 300–600?°C are in amorphous state with ultrasmooth surface (RMS ~ 0.2?nm) and high transparency (above 95%) in the visible range. The leakage current of Al2O3 films gradually decreases with the increase of annealing temperature. Al2O3 thin films annealed at 600?°C showed the low leakage current density down to 3.9?×?10?7 A/cm2 at 3?MV/cm. With the increase of annealing temperature, the capacitance first decreases then increases to 101.1?nF/cm2 (at 600?°C). The obtained k values of Al2O3 films are up to 8.2. The achieved dielectric properties of Al2O3 thin films are highly comparable with that by vapor and solution methods. Moreover, the fully solution-processed InZnO TFTs with Al2O3 dielectric layer exhibit high mobility of 7.23?cm2 V?1 s?1 at the low operating voltage of 3?V, which is much superior to that on SiO2 dielectrics with mobility of 1.22?cm2/V?1 s?1 at the operating voltage of 40?V. These results demonstrate that solution-processed Al2O3 thin films are promising for low-power and high-performance oxide devices.  相似文献   

8.
Orthorhombic Sc2Mo3O12 films have been successfully prepared via spin coating technique followed by annealing at 500–750 °C. The phase composition, microstructure, morphology and negative thermal behavior of the synthesized Sc2Mo3O12 films were investigated. XRD and XPS analysis indicate that as-deposited film is amorphous. Orthorhombic Sc2Mo3O12 films can be prepared after post-annealing at 500–750 °C for 1 h. The crystallinity of Sc2Mo3O12 films gradually improved with the increase of post-annealing temperature. SEM analysis shows as-deposited film is smooth and compact, and the grain size of Sc2Mo3O12 film grows up as the post-annealing temperature increases. Variable temperature XRD analysis demonstrates that the synthesized orthorhombic Sc2Mo3O12 films show stable thermo-chemical and anisotropic NTE property in 25–700 °C. The corresponding coefficients of thermal expansion (CTEs) of the orthorhombic Sc2Mo3O12 film in a, b and c directions are ?6.68 × 10?6 °C?1, 5.08 × 10?6 °C?1 and ?4.76 × 10?6 °C?1, respectively. The whole unit cell of the orthorhombic Sc2Mo3O12 film shrinks and the volumetric CTE of the Sc2Mo3O12 thin film is ?6.36 × 10?6 °C?1, and the linear CTE is about ?2.12 × 10?6 °C?1 (αv = 3αl).  相似文献   

9.
Using hydrofluoric acid as acid catalyst, F doped nanoporous low-k SiO2 thin films were prepared through sol-gel method. Compared with the hydrochloric acid catalyzed film, the films showed better micro structural and electrical properties. The capacitance-voltage and current-voltage characteristics of F doped SiO2 thin films were then studied based on the structures of metal-SiO2-semiconductor and metal-SiO2-metal, respectively. The density of state (DOS) of samples deposited on metal is found to decrease to a level of 2 × 1017 eV?1 cm?3. The values of mobile ions, fix positive charges, trapped charges and the interface state density between the SiO2/Si interfaces also decrease obviously, together with the reduction of the leakage current density and the dielectric constant, which imply the improvement of the electrical properties of thin films. After annealing at a temperature of 450°C, the lower values of the leakage current density and dielectric constant could be obtained, i.e. 1.06 × 10?9 A/cm2 and 1.5, respectively.  相似文献   

10.
Using hydrofluoric acid as acid catalyst, F doped nanoporous low-k SiO2 thin films were prepared through sol-gel method. Compared with the hydrochloric acid catalyzed film, the films showed better micro structural and electrical properties. The capacitance-voltage and current-voltage characteristics of F doped SiO2 thin films were then studied based on the structures of metal-SiO2-semiconductor and metal-SiO2-metal, respectively. The density of state (DOS) of samples deposited on metal is found to decrease to a level of 2 × 1017 eV−1 cm−3. The values of mobile ions, fix positive charges, trapped charges and the interface state density between the SiO2/Si interfaces also decrease obviously, together with the reduction of the leakage current density and the dielectric constant, which imply the improvement of the electrical properties of thin films. After annealing at a temperature of 450C, the lower values of the leakage current density and dielectric constant could be obtained, i.e. 1.06 × 10−9 A/cm2 and 1.5, respectively.  相似文献   

11.
The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young''s modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall–Petch equation.  相似文献   

12.
The effects of deposition temperature on orientation, surface morphology and dielectric properties of the thin films for Ba0.6Sr0.4TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition were investigated. X-ray diffraction patterns revealed a (2 1 0) preferred orientation for all the films. With rising substrate temperature from 650 °C to 700 °C, the crystallinity and crystal grain size of the films increase, the relative dielectric constant increases, but the dielectric losses have not obvious difference. The film deposited at 350 °C and annealed at 700 °C has strongly improved roughness and dielectric permittivity compared with the film only deposited directly at 700 °C. Three distinct relaxation processes within tan(δ) were found for the BaxSr1?xTiO3 film: a broadened process of the film relaxation, an intermediate peak which originates from Maxwell–Wagner–Sillars polarization, and an extremely slow process ascribed to leak current. The complex dielectric permittivity and loss can be fitted by an improved Cole–Cole model corresponding to a stretched relaxation function.  相似文献   

13.
The BaSn0.15Ti0.85O3 (BTS) thin films are prepared on Pt-Si substrates with thickness ranging from ~ 60?nm to ~ 380?nm by radio frequency magnetron sputtering. The effects of thickness on microstructure, surface morphologies and dielectric properties of thin films are investigated. The thickness dependence of dielectric constant is explained based on the series capacitor model that the BTS thin film is consisted by a BTS bulk layer and an interfacial layer (dead layer) between the BTS and bottom electrode. The thin films with thickness of 260?nm give the largest figure of merit of 76.9@100?kHz, while the tunability and leakage current density are 64.6% and 7.46?×?10?7 A/cm2 at 400?kV/cm, respectively.  相似文献   

14.
In the present work, ZnO thin films were irradiated with 700?keV Au+ ions at different fluence (1?× 1013, 1?× 1014, 2?× 1014 and 5?× 1014 ions/cm2). The structural, morphological, optical and electrical properties of pristine and irradiated ZnO thin films were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscope (SEM), spectroscopy ellipsometry (SE) and four point probe technique respectively. XRD results showed that the crystallite size decreased from pristine value at the fluence 1?×?1013 ions/cm2, with further increase of ion fluence the crystallite size also increased due to which the crystallinity of thin films improved. SEM micrographs showed acicular structures appeared on the ZnO thin film surface at high fluence of 5?×?1014 ions/cm2. FTIR showed absorption band splitting due to the growth of ZnO nanostructures. The optical study revealed that the optical band gap of ZnO thin films changed from 3.08?eV (pristine) to 2.94?eV at the high fluence (5?× 1014 ions/cm2). The electrical resistivity of ZnO thin film decreases with increasing ion fluence. All the results can be attributed to localized heating effect by ions irradiation of thin films and well correlated with each other.  相似文献   

15.
The chemical solution deposition of Mg(OH)2 thin films on glass substrates and their transformation to MgO by annealing in air is presented. The chemical solution deposition consists of a chemical reaction employing an aqueous solution composed of magnesium sulfate, triethanolamine, ammonium hydroxide, and ammonium chloride. The as-deposited films were annealed at different temperatures ranging from 325 to 500?°C to identify the Mg(OH)2-to-MgO transition temperature, which resulted to be around 375?°C. Annealing the as-deposited Mg(OH)2 films at 500?°C results in homogeneous MgO thin films. The properties of the Mg(OH)2 and MgO thin films were analyzed by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV–Vis spectroscopy, and by circular transmission line model. Results by X-ray diffraction show that the as-deposited thin films have a brucite structure (Mg(OH)2), that transforms into the periclase phase (MgO) after annealing at 500?°C. For the as-deposited Mg(OH)2 thin film, a nanowall surface morphology is found; this morphology is maintained after the annealing to obtain MgO, which occurred with the evident formation of pores on the nanowall surface. The assessed chemical composition from X-ray photoelectron spectroscopy yields Mg0.36O0.64 (O/Mg ratio of 1.8) for the as-deposited Mg(OH)2 film, where the expected stoichiometric composition is Mg0.33O0.67 (O/Mg ratio of 2.0); the same assessment yields Mg0.60O0.40 (O/Mg ratio of 0.7) for the annealed thin film, which indicates the obtainment of a MgO material with oxygen vacancies, given the deviation from the stoichiometric composition of Mg0.50O0.50 (O/Mg ratio of 1.0). These results confirm the deposition of Mg(OH)2 films and the obtainment of MgO after the heat-treatment. The energy band gap of the films is found to be 4.64 and 5.10?eV for the as-deposited and the film annealed at 500?°C, respectively. The resistivity of both Mg(OH)2 and MgO thin films lies around 108?Ω·cm.  相似文献   

16.
《Ceramics International》2021,47(24):34774-34782
SiO2 and SnO2 films were deposited using plasma-enhanced atomic layer deposition (PEALD) at low temperature (100 °C), and homogeneously mixed structure (HMS) films consisting of Si, Sn, and O were deposited through a “1st precursor dose – 2nd precursor dose – oxidation”, a new ALD process method for mixing two elements. For a deep consideration of the growth mechanism during the HMS film deposition process, density functional theory (DFT) calculations of the adsorption reactions of the precursors on the surface were conducted. The properties of the thin films such as density, atomic composition, crystallinity, surface roughness, optical transmittance and the water vapor diffusion barrier property were analyzed by XRR, XPS, XRD, AFM, UV-VIS and the electrical Ca test.By changing the dose sequence of the two precursors in the HMS process, various physical/chemical characteristics of the films could be controlled. Also, by adjusting the appropriate amount of Sn in the HMS films, the shortcomings of SnO2 were compensated by the mixed SiO2; and through this process, excellent gas diffusion barrier properties of WVTR ∼ 1.33 × 10−4 g/m2day were secured.  相似文献   

17.
xNd(Zn1/2Ti1/2)O3–(1?x)Ba0.6Sr0.4TiO3 (xNZT–BST) thin films were fabricated on Pt/Ti/SiO2/Si substrates by sol–gel method with = 0, 3%, 6%, and 10%. The structures, surface morphology, dielectric and ferroelectric properties, and thermal stability of xNZT–BST thin films were investigated as a function of NZT content. It was observed that the introduction of NZT into BST decreased grain size, dielectric constant, ferroelectricity, tunability, and significantly improved dielectric loss and dielectric thermal stability. The corresponding reasons were discussed. The 10%NZT–BST thin film exhibited the least dielectric loss of 0.005 and the lowest temperature coefficient of permittivity (TCP) of 3.2 × 10?3/°C. In addition, the figure of merit (FOM) of xNZT–BST (x = 3%, 6%, and 10%) films was higher than that of pure BST film. Our results showed that the introduction of appropriate NZT into BST could modify the dielectric quality of BST thin films with good thermal stability. Especially for the 3%NZT–BST thin film, it showed the highest FOM of 33.58 for its appropriate tunability of 32.87% and low dielectric loss of 0.0098.  相似文献   

18.
In this work, we have investigated the surface topography evolution of sol-gel deposited SiO2-SnO2 nanocomposite films annealed in the temperature range 200–600°C. The fractal dimension of atomic force microscopy images of the films was determined by the cube counting method and the triangulation method. The fractal dimension was shown to be an appropriate and easy to use tool for the characterization of nanosized thin film structures. Raman spectroscopy revealed the formation of a SiO2 cage-like structure at 400°C and SnO2 crystallization above 500°C.  相似文献   

19.
Very thin films of poly(vinyl alcohol) could be prepared by utilizing the adsorption of polymer molecules at air/water interface from the aqueous solutions of the poly(vinyl alcohol) derived from vinyl trifluoroacetate. The films prepared by the bubble method were thinner than those obtained by the frame method. The minimum thickness of the former films was 260 Å and that of the latter was 1800 Å. These very thin films resisted water at temperatures below 55°C. The maximum Young's modulus of the drawn/annealed films prepared from these samples was 30 GPa. The permeability of water, JwP, was 2–6 × 10?3 cm · s?1 atm?1 (0–55°C) for the untreated film (thickness: 1800 Å) prepared by the frame method and 0.8–2.2 × 10?2cm · s?1 · atm?1 (5–55°C) for the untreated film (360 Å) prepared by the bubble method, and depended on the thickness of film.  相似文献   

20.
孙琳  单国荣  潘鹏举 《化工学报》2014,65(1):352-357
采用溶胶凝胶法,以钛酸丁酯为前驱体、硝酸银络合物为银源、聚乙二醇2000(PEG2000)作为结构导向剂,制备超亲水多孔Ag-TiO2复合薄膜。用X射线衍射仪、X射线光电子能谱仪、扫描电镜、原子力显微镜表征薄膜晶相结构、化学成分以及表面形貌。根据静态水接触角、动态润湿时间、超亲水长效稳定性综合评价不同Ag含量及PEG2000添加量薄膜的超亲水性能。研究发现,掺杂Ag与PEG2000对薄膜在非紫外光下的超亲水特性具有协同作用,掺杂Ag明显提高薄膜动态润湿速度及可见光响应,表面粗糙多孔结构有利于避光条件下的长效超亲水特性。Ag含量10%、PEG2000掺杂量5%的Ag-TiO2复合薄膜在自然光条件下已具备优良的超亲水性能;水滴0.2 s内即可在表面完全铺展到0°;避光条件下保存,超亲水时效性可达到30 d以上。在可见光活化下即可强化超亲水性能,具有良好的防雾效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号