首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
Er,Cr:YSGG lasers are currently being investigated for disinfecting the root canal treatment. The aim of this study was to compare the effects of various irrigation protocols on push-out bond strength of fiber posts. Fifty maxillary anterior teeth were divided into five groups (n = 10) according to the protocol that applied into the post space. Group-1: distilled water, Group-2: 5% NaOCl, Group-3: 2% CHX, Group-4: Er,Cr:YSGG laser (1.5 W, 20 Hz, 85 air, 75 water, 26.7 J/cm2), Group-5: Er,Cr:YSGG laser (1.25 W, 50 Hz, 34 air, 24 water, 12.7 J/cm2). Fiber posts were cemented with resin cement. The remaining part of the root, three slices were obtained from each specimen and push-out test was performed. One-way ANOVA and Duncan’s test at a 5% level of significance were used for the statistical analysis. Post space irradiation with Er,Cr:YSGG laser (1.5 W 20 Hz, 85 air, 75 water, 26.7 J/cm2) increases push-out bond strength of fiber post to root canal dentin. Further investigations are needed to establish and optimize ER,Cr:YSGG laser parameters to increase the push-out bond strength of fiber posts.  相似文献   

2.
The aim of the study was to investigate the adhesive bond and compressive strength of novel bulk fill resin composite with zirconia (Zr) nano-hybrid filler. Sixty molars were mounted in acrylic resin with flat occlusal surface. Half of the specimen (n = 30) were bonded using total etch (TE) and the other half with self-etch (SE) technique. Specimens treated with SE (n = 30) and TE (n = 30) bonding protocol were divided into three groups, based on the type of bulk fill build-up materials (ZC–ZirconCore, MC–MulticCore Flow and LC–Luxacore Dual), resulting in six study groups [MC-TE, MC-SE, LC-TE, LC-SE, ZC-TE, ZC-SE]. Cylindrical (3 × 3 mm) build-ups were performed followed by shear bond strength testing (crosshead speed-1 mm/min). Ten specimens for each bulk fill build-up material (MC, LC and ZC) were prepared for compressive strength testing. All specimens were tested for maximum failure loads (crosshead speed?0.5 cm/min). Analysis of variance and paired t-test were performed to statistically analyze the data. TE technique showed significantly higher bond strength values as compared to SE technique (p < 0.001) for all three materials (MC, LC and ZC). Shear bond strength for MC [TE,17.88(2.00)-SE,9.43(0.98)] and LC [TE,18.91(2.57)-SE,6.35(1.12)] groups were significantly higher than ZC group [TE,13.99(1.09)-SE,4.61(0.84)]. Specimens in ZC group (266.73 ± 9.76) showed significantly higher compressive strength in comparison to MC (247.66 ± 9.72) (p = 0.004) and LC (249.87 ± 13.17) (p < 0.001) groups. Zirconia nano-hybrid filler resin bulk fill material has comparatively high compressive strength and low bond strength making them suitable for clinical applications in the posterior region with favorable conditions for adhesive bonding.  相似文献   

3.
The purpose of this study was to determine the surface energy parameters of dental self-adhesive resin cements (SRCs) and to measure their bond strength to dentin. Six dental SRCs (RelyX Unicem Clicker, RU; Maxcem Elite, ME; BisCem, BC; Clearfil SA Luting, SA; Multilink Speed, MS; seT PP, SP) and one resin-modified glass ionomer cement (RelyX Luting 2, RL; control) were tested. Smear layer-covered bovine dentin was used as bonding substrate. Using the dynamic sessile drop method, surface energy, surface energy components, degree of hydrophobicity/hydrophilicity (expressed as ΔG sws using thermodynamic notation), and apparent surface energies for each material were calculated. The luting cements were bonded to the dentin and stored in water at 37?°C for 24?h prior to shear bond strength test (n?=?10). Pearson correlation analysis was applied to detect possible correlations between surface energy parameters and measured shear bond strength (α?=?0.05). RU, SA, and MS produced negative ΔG sws values (hydrophobic), whereas ME, BC, SP, and RL yielded positive ones (hydrophilic). RU had the highest value among all six SRCs tested, the value for MS being statistically equivalent (p?=?0.785). The base component, ΔG sws, and surface energy determined with water showed significant negative linear correlations with dentin bond strength (r/p?=??0.801/0.030, ?0.900/0.006, and ?0.892/0.007, respectively). These results suggest that bonding to smear layer-covered bovine dentin was governed by the base component and the hydrophobicity/hydrophilicity of the SRCs.  相似文献   

4.
Two liquids, acetic acid and hexafluoroisopropanol (HFIP), and two solids, silica gel and polymethacrylic acid (PMA), were compared for hydrogen bond donor ability, acid strength, and catalytic activity in typical acid‐catalyzed reactions, inversion of sugar and cleavage of acetone dimethyl ketal. In each pair, the weaker acid (HFIP and silica gel, respectively) was much the stronger hydrogen bond donor, but was totally devoid of catalytic activity, which the poor hydrogen bond donor but stronger acids (acetic and methacrylic acid, respectively) exhibited. A strong hydrogen bond donor (e.g., HFIP) enhances, however, the catalytic activity of the acid catalyst (AcOH). Thus, hydrogen bond donor ability is not a measure of acid strength. A correlation of the two properties is possible only when each group (acids and bases) involved in the comparison consists of very close structural relatives. Such a correlation cannot be extrapolated to any other case. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The aim was to assess the shear bond strength (SBS) of lithium disilicate (LD) ceramic to resin composite with different universal adhesives, duration of ageing and silane. One hundred and twenty LD ceramic discs were processed, fired and etched (HF acid 5%) for 20 s (sec). All specimens were divided into 12 groups (n = 10), based on different combinations of, 3 different universal adhesives [Scotchbond (SB) Universal Adhesive, All-Bond (AB) Universal, and Futurabond U (FU)], silane and different duration of ageing [24 h and 3 months]. Composite resin cylinders (Tetric ceram) (3mm × 2 mm) were formed using bonding jig on ceramic and were light-cured. The specimens in groups 1–6 and 7–12 were stored in distilled water (37 °C) for 24 h and 3 months (thermocycling -5000 cycles 5–55 °C/30 s dwell time) before being subjected to bond strength testing respectively. Using universal testing machine shear bond test was performed at a crosshead speed of 1 mm/min. Failure modes and fracture patterns were assessed using stereomicroscope and scanning electron microscope. Analysis of variance was performed to analyze data. SBS was significantly higher with silane than without silane (p < 0.01), regardless of the type of adhesive or storage duration. Specimens tested at 24 h storage showed significantly higher (p < 0.01) SBS than specimens tested after 3-months. A comparison among different universal adhesives showed significantly distinct bond strength (p < 0.01). Optimal bonds to LD were achieved by application of silane. While ageing through storage had a negative impact on the SBS, it varied among different adhesives.  相似文献   

6.
The aim of this study was to investigate the microshear bond strength of five universal adhesives for use with demineralized enamel, with and without pre-etching. Using five universal adhesives (Single Bond Universal (SBU), Clearfil Universal (CU), Prime&Bond Elect Universal (PBU), Bisco All Bond Universal (ABU), Gluma Bond Universal (GU)), composite cylinders were bonded to the labial surfaces of extracted upper incisor teeth, with or without pre-etching. A micro-shear bond strength test was performed. The debonding surfaces were evaluated with the use of SEM. The data was analyzed using one-way ANOVA and Tukey’s Post-hoc tests. SBU, ABU, and PBU increased the bond strength statistically when used in etch&rinse mode (p?<?0.05). GU and CU did not change the bond strength statistically with the use of pre-etching (p?>?0.05). The bond strength of universal adhesives on demineralized enamel, with and without initial acid etching, depends on the type of adhesive system used.  相似文献   

7.
This study aimed to evaluate the fracture load and push-out bond strength of flared root canals restored with different procedures, including a technique with a fiber post and a chemically activated resin composite. Eighty human canines were selected and treated endodontically. Two methodologies were used: push-out and fracture load. The teeth were divided into four groups: Cast metal core (CMC); PAN (direct anatomic post); PAC (fiber post and accessory posts); and PE (fiber post with chemically activated resin composite). For the fracture load test, the samples were submitted to load application in a universal testing machine. The fracture mode was evaluated visually. Forty other samples were submitted to the push-out test. The fracture load (n = 10) and the bond strength (n = 10) were analyzed by analysis of variance and Tukey tests (α < 0.05). CMC presented the highest fracture load (p < 0.05), and no significant differences were observed in the fracture load values for Groups PAN, PAC, and PE. CMC presented 90% of unfavorable failures; PAN and PAC, the remaining 10% of these failures. PE presented only favorable failures. PAC presented lower push-out bond strength values. The fracture load for CMC procedure was higher than that of the others, but presented 90% unfavorable fractures, indicating the use of any of the glass fiber post techniques evaluated for restoring flared root canals due to favorable fracture modes.  相似文献   

8.
The aim of the present study is to investigate the effect of aging type (thermocycling vs. water storage) and aged unit (block vs. stick) on the repair strength of resin composite to feldspathic porcelain in testing microtensile bond strength (μTBS). Ceramic specimens (N = 30) (10 × 5.7 × 4.5 mm3, Vita Mark II, Vita) were obtained from CAD–CAM blocks. One surface was etched with 10% HF and silanized. An adhesive was applied and resin composite blocks were constructed incrementally on the conditioned surface. The specimens were randomly divided into five groups (n = 6): Control (C): Non-aged; BTC: Blocks were thermocycled (5–55 °C, 6000 cycles); STC: Sticks were thermocycled; BS: Blocks aged in water storage (6 months) after themocycling; SS: Blocks aged in water storage (6 months) after thermocycling. After μTBS test, failure types were classified. Data (MPa) were statistically analyzed (1-way and Dunett and 2-way ANOVA, Tukey`s) (α = 0.05). Two-parameter Weibull distribution values including the Weibull modulus, scale (m), and shape (0) values were calculated. Aging type (p = 0.009) and aged unit (p = 0.000) significantly affected the results. Interaction terms were also significant (p = 0.000). Considering the stick level, there was no significant difference between thermocycling (STC: 25.7 ± 2.3) and water storage (SS: 25.3 ± 3.8) (p > 0.05) but the results were significantly higher when blocks were thermocycled (BTC: 31.6 ± 2.9) (p < 0.05). Weibull modulus and characteristic strength was the highest in BTC (m = 4.2; σo: 34.4) among all other groups (m = 3–3.9; σo: 14.6–28.5). Adhesive failures were common and cohesive failures occurred in less than 5% in all groups. Aging protocol was detrimental on durability of repair strength of resin composite to feldspathic porcelain. Exposing the sticks to either thermocycling or water storage aging should be considered in in vitro studies.  相似文献   

9.
Calcium aluminate cement (CAC) mortars were investigated by nondestructive ultrasonic measurement in the through-transmission mode and compressive strength measurements. The detected profile of ultrasonic signal was fitted as a sine wave modulated with the Gauss function. The linear relationship between compressive strength and the product of the amplitude and angular frequency of the signal was established. A qualitative explanation of the proposed correlation based on the existing theories was given.  相似文献   

10.
The aim of this study was to evaluate the immediate and the long-term push-out bond strength of glass fiber posts (GFP) cemented with conventional or self-adhesive dual-curing resin cements, at different root depths. Prior to cementation, the GFP (Reforpost #3, Angelus) were etched with 37% phosphoric acid for 30 s followed by silane for 1 min. Thirty canine roots were divided into two groups (n = 15) according to resin cement type: ARC – dual resin cement (RelyX ARC/3M ESPE) combined with an three-step etch-and-rinse adhesive (Adper Scotch Bond Multi-Purpose Plus 3M/ESPE) or U200 – self-adhesive resin cement (RelyX U200/3M ESPE). The manufacturer’s instructions were followed. After 48 h, the roots were cross-sectioned at three different depths, resulting in serial slices corresponding to the cervical, middle, and apical root thirds. Slices were randomly divided into two groups, according to the period of water storage prior to push-out bond strength analysis: 48 h or 180 days. The data (MPa) were analyzed using three-way ANOVA for randomized blocks (p < 0.05), which showed no significant interaction between the three factors (p = 0.716). The main study factors were also proven not significant (cement: p = 0.711; time: 0.288; root third: p = 0.646). In conclusion, root depth, cement type (self-adhesive or conventional), and storage in water for 180 days did not influence the bond strength of GFP to intracanal dentin.  相似文献   

11.
The aims of this study were (a) to evaluate the influence of glass fiber post translucency on the hardness of a light-cure resin cement within the root canal; (b) to assess dentin bond strength at different root levels. Fifty human canine roots were randomly divided into five groups. Translucent posts (Exacto, Angelus; White Post DC, FGM; FRC Postec Plus, Ivoclar Vivadent) were used in three groups, opaque posts (Exacto Opaco, Angelus) were used in one group and no posts were used in the last group. The posts were cemented using a light-cure resin cement (Variolink N Base, Ivoclar Vivadent). The roots were cross-sectioned into slices (two from the cervical, two from the middle, and two from the apical thirds) which were then submitted to microhardness and push-out tests. Two-way analysis of variance and Tukey test were performed. Cement microhardness was significantly higher in the translucent post groups when compared to opaque posts and no post. At the apical third, the White Post DC and FRC Postec groups showed higher microhardness values than those in the Exacto Translucido group. The type of glass fiber post did not significantly influence bond strength values. White Post DC and FRC Postec Plus provided higher resin cement microhardness values, especially at the most apical thirds. Bond strength was not dependent on the type of post used. Failure mode analysis suggested superior cement curing when the translucent posts were used.  相似文献   

12.
Objective: This study aimed to evaluate the bond strength (BS) of glass fiber posts (GFP) at different root levels when luted with conventional or self-adhesive cements in crown-restored human premolars subjected, or not, to cyclic mechanical loading.

Materials and Methods: Sixty lower premolar roots were endodontically treated and prepared for a GFP system. Half of the roots (n = 30) had their posts cemented with a self-adhesive resin cement, while the remaining roots followed a three-step conditioning method: acid etch, bonding agent, and a conventional resin cement. Metal crowns were luted onto the post-core preparations and the specimens were embedded to simulate the periodontium. Half of the specimens from each group (n = 15) were submitted to cyclic loading simulations (130 N; 2.0 Hz) and then sections were obtained from each root for the pushout BS test.

Results: Independently of the cyclic loading and the root level tested, the conventional resin cement provided significantly higher values of BS (p = 0.002). For either cement or either root level, cyclic loading caused a significant decrease in BS values (p = 0.023). The Tukey test indicated that, regardless of the resin cement used or the cyclic loading, BS was highest at the middle and cervical thirds of the root (p = 0.026), and their values did not differ between themselves.

Conclusions: When used for luting GFP, self-adhesive resin cement resulted in lower pushout BS than the conventional counterpart, with cyclic loading causing a decrease in BS of the GFP to dentin for both resin cements.  相似文献   

13.
The bonding that exists between the old concrete and the new concrete depends largely on the quality of substrate surface preparation. The accurate representation of substrate surface roughness can help determine very precisely the correct bonding behavior. In this work, an experimental investigation was carried out to quantify the normal concrete (NC) substrate roughness parameters and evaluate their relationship with the bonding performance of ultra high-performance fiber concrete (UHPFC), used as a repair material. The bond strength was quantified based on the results of the pull-off test, splitting cylinder tensile test, and the slant shear test. Three types of NC substrate surface preparation were used: as-cast (without surface preparation) as reference, wire-brushed, and sand-blasted (SB); the roughness of which was determined using an optical three-dimensional (3D) surface metrology device (Alicona Infinite Focus). It was observed from the result of the pull-off test that failure occurred in the substrate, even though adequate substrate surface roughness was provided. Moreover, analysis of the splitting cylinder tensile and slant shear test results showed that the substrate surface preparation method had a significant influence in bonding strength between UHPFC and the NC substrate. The composite UHPFC/NC substrate having a SB surface behaved closely as a monolithic structure under splitting and slant shear tests. An excellent correlation (R 2?>?85%) was obtained between the substrate roughness parameters and the results of the splitting cylinder tensile and slant shear tests.  相似文献   

14.
The purpose of this study was to evaluate the shear bond strength and the morphological differences of adhesive/dentin interface of two one-step universal adhesives to dentin using different dentin-conditioning methods with etch-and-rinse mode. Ninety-six dentin specimens were randomly divided into two groups based on application of two adhesives and assigned to three subgroups according to different dentin conditioning (wet-bonding; air-dried; rewetting). After etching and rinsing, experimental dentin conditioning was conducted on the etched dentin specimens. All specimens were subjected to shear bond strength testing using a universal testing machine, and all data were statistically analyzed using two- way analysis of variance with Tukey’s post hoc test. All debonded specimens were examined for fracture pattern by scanning electron microscopy (SEM). Adjunctively, one specimen per group was prepared by the same processing and longitudinally sectioned. Then, the infiltration ability of adhesives into dentin was examined by observing the interface using confocal laser-scanning microscopy (CLSM). Wet and Rewet groups exhibited significantly higher shear bond strength than dry groups on the etch-and-rinse system, regardless of different adhesives. The bond strength between wet and rewet groups showed no significant difference in Tukey’s test. Analysis of failure surface using SEM showed that predominant failure patterns were mixed in both the wet-bonding group and dry-bonding group. CLSM presented that resin penetration into etched dentin was enhanced similarly in wet and rewet group. Application of rewetting agents on dried dentin increased the bonding performance of universal adhesives on etch-and-rinse mode.  相似文献   

15.
Emulsion polymer isocyanate ( ), polyvinyl acetate ( ) and resorcinol-formaldehyde ( ) adhesives were used to produce single lap shear specimens using resinous and non-resinous apitong (Dipterocarpus spp.) timbers. Tests showed that joints made with highly resinous apitong were about 40% weaker than similar joints made with non-resinous apitong. The resinous apitong was treated with different solvents to yield five different extractives which were characterized by infra-red analysis. Apitong extractives were then added to and adhesives and joints made with buna (Fagus crenata), a timber known to be low in extractives and easy to bond. Joints prepared using extractive-containing adhesives were generally weaker than those made with the unmodified adhesives. RF adhesives containing extractives cured more slowly than unmodified . It is thought that the acidic nature of the extractives changes the pH of the system sufficiently to affect the curing mechanism  相似文献   

16.
粉煤灰矿渣复合水泥强度协同效应的研究   总被引:4,自引:1,他引:4  
研究了由粉煤灰、矿渣、钢渣与一定量熟料组成的粉煤灰矿渣复合水泥中各组分对水泥的强度协同效应以及影响协同效应的主要因素。并利用SEM和MIP等技术研究了粉煤灰矿渣复合水泥的水化硬化过程、水化产物相组成及硬化浆体结构,以此来论证各组分间协同效应的作用机理。研究结果表明:当各组分比例适当时,通过石膏和添加剂的有效作用,采取合理的粉磨工艺和制度,粉煤灰矿渣复合水泥各组分可以产生强度协同效应。  相似文献   

17.
ABSTRACT

Gelatin hydrogel has been widely applied in bio-applications due to their good biocompatibility and high water content. However, poor mechanical properties of gelatin hydrogel greatly limit their application. Here we present a facile one-step soaking method to fabricate a recoverable gelatin hydrogel with high mechanical property, which is based on hydrogen bonds and metal ionic interaction. The mechanical properties of gelatin hydrogels can be tuned with different metal ions, temperatures and soaking times. Especially, gelatin-Fe3+ hydrogel can reach to 65 MPa compression stress with the compressive strain over 99% and possess good fatigue resistance under cyclic loadings. Besides, hydrogels crosslinked with metal ions show better antibacterial ability against Escherichia coli and Staphylococcus aureus. This work suggested an alternative for the design of tough gelatin-based hydrogels with desirable properties, which may hold promising for potential bio-applications under physiological conditions.  相似文献   

18.
This study was to evaluate the effects of universal adhesive and innovative fabrication techniques of Cobalt-Chromium (Co-Cr) alloys on shear bond strength (SBS) between the repair material. One hundred forty-four Co-Cr alloys specimens were fabricated by casting (C), milling (M), direct process powder-bed method (CL), and direct metal laser sintering (DMLS) (EL). Each group was then divided randomly into three groups, according to the chemical agent used: alloy primer (Z), universal adhesive (A), or both (AZ). The composite resin cylinders were built on metal specimens. SBSs were determined after water storage and thermocycling, and data were statistically analyzed. The method used for the fabrication of Co-Cr alloy had a significant effect on bond strength (p?=?0.016). AZ (12.077?±?0.575?MPa) groups showed highest SBS values. Co-Cr alloys fabricated with DMLS method have a superior repair capacity. The universal adhesive increased the repair strength when applied with an alloy primer.  相似文献   

19.
Abstract

This research focuses on the development of eco-friendly denture adhesives (EFDAs) by studying the effects of the addition of different types of native and modified natural starches as fillers in denture adhesive properties for dental applications. The properties of EFDAs filled with single and hybrid starches in comparison with a selected commercial denture adhesive were investigated. The investigated single starches were corn, tapioca and sago while the hybrid starches used were corn/tapioca (CT), corn/sago (CS) and tapioca/sago (TS), all with ratio of 1:1. The EFDAs were prepared with 5, 10 and 15 percent (wt. %) loading of starch filler. The starches were chemically and physically modified via oxidation and gelatinization techniques. The mechanical characterization performed were tensile bonding strength (TBS), adhesiveness and hardness, as well as cytotoxicity test by using an MTT assay for biological analysis. Mechanical analysis indicated that produced EFDAs have higher tensile bond strength, adhesiveness and hardness as compared to the commercial denture adhesive. The increment was associated with the addition of hybrid starches and an optimum filler loading at 10%. The EFDAs were also non-toxic to the dental pulp stem cells (DPSC) up to 48?h. EFDA has good potential to be used as a natural based denture adhesive as it contains natural materials namely starch which enhances its properties. The properties were suitable for better denture bonding, retention and showed good interaction with the biological environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号