首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to evaluate the influence of chemical and physical processes at the resin-composite and composite-cement interface as a function of the resin composite's water exposure on the bond strength (BS) between these two components. The free-radical concentration was studied using electron paramagnetic resonance (EPR), while the chemical changes at the resin composite's surface were studied using attenuated total-reflection FTIR spectroscopy (ATR-FTIR). The free-radical concentration in the studied samples dropped to 10% in 24 h, indicating that prolonged BS values do not correlate with the free-radical concentration. An alternative bonding mechanism between the resin composite and the composite cement was proposed, based on the formation of an interpenetrating polymer network (IPN) layer at the interface. As proven using ATR-FTIR spectroscopy, changes occurred at the resin composite's surface as a consequence of water exposure, comprising the diffusion of water molecules into the resin composite. These changes reduced the diffusion rate of the composite cement's phosphorus-containing monomers into the resin composite, as shown by the linescan SEM-EDS analysis of phosphorus, thus reducing the thickness of the IPN layer at the interface and consequently reducing the BS between both components.This study reveals that the concentration of free radicals at the surface of the resin composite is only relevant immediately after the polymerisation to the bond strength between the resin composite and the composite cement. Therefore, an alternative explanation is given by applying the theory of the formation of a gradient IPN at the interface between the resin composite and the adhesive cement by changes in the rate of diffusion of the adhesive cement's monomers into the resin composite as a function of the resin composite's exposure to water.  相似文献   

2.
This study evaluated the effect of air-abrasion protocols on the topography, surface wettability and adhesion of resin cement to zirconia. Ceramic specimens (N?=?49; n?=?7) (15?mm × 2?mm) were randomly allocated to seven groups to be treated with: (1) Air-abrasion with 45?μm Al2O3 (A45), (2) 80?μm Al2O3 (A80), (3) 30?μm Al2O3 coated with SiO2 (CoJet) (C30), (4) 30?μm Al2O3 coated with SiO2 (Rocatec Soft) (R30), (5) 110?μm Al2O3 coated with SiO2 (Rocatec Plus) (R110); (6) R110R30 (Rocatec) (R110R30) and (7) control, no conditioning (NC). Air-abrasion was performed using a chairside air-abrasion device (2.5?bar, 10?mm, 90?s). Contact angle measurements were performed using goniometry (n?=?5). MDP-based dual resin cement (Panavia F2.0) was bonded on four locations after air-abrasion protocols (n?=?20 per group). Half of the specimens were tested after 24?h and the other half after thermal cycling (×3000, 5–55?°C). Data were analyzed using 1-, 2-way ANOVA and Tukey’s test (alpha = 0.05). Significantly lower contact angle values were observed for groups C30 (62.6?±?0.91), R30 (61.91?±?1.05) and R110R30 (61.54?±?1.02) compared to those of other groups (65.5?±?0.9–110.61?±?0.9) (p?<?0.05). In dry conditions, surface conditioning methods tested did not show significant effect on bond strength (MPa) (10.57?±?1.42–16.86?±?2.54) (p?=?0.238). After thermocycling, bond strength results decreased significantly (p?<?0.05) (12.6–51.2%). R110 (7.18?±?1.34) and A80 (4.92?±?1.53) showed significantly higher bond strength compared to other groups (2.13?±?0.73–4.16?±?1.34) (p?<?0.05). The best wettability and adhesion results with MDP-based resin cement to zirconia was achieved with A80 and R110 air-abrasion.  相似文献   

3.
This study evaluated the effect of temporary cement residue removal methods from human coronary dentin on the bond strength of adhesively-luted zirconia on dentin. Forty non-carious human molars were embedded in acrylic resin and the dentin surfaces were exposed. Temporary acrylic crowns were provisionally cemented with zinc oxide cement without eugenol and stored in distilled water (37?°C/15?days). After crown removal, the excess temporary cement was removed from dentin according to one of the following cleaning methods: (n?=?8 per group): (a) air-water rinse (AW), (b) pumice paste (PP), (c) air-abrasion with aluminum oxide particles (Al2O3) (AA), (d) sodium bicarbonate spray (SB) or (e) glycine powder (CP). Forty zirconia cylinders were made and each cylinder was adhesively luted onto each tooth after adhesive resin (Scotch Bond Universal, 3?M ESPE-SBU) application using resin cement (RelyX Ultimate, 3?M ESPE) and photo-polymerized from each surface for 20?s. The bonded specimens were stored in distilled water (37?°C) for 90?days. The bonded interface was loaded under shear (1?mm/min). Data (MPa) were analyzed using 1-way ANOVA and Tukey's test (α?=?0.05). Mean bond strength was significantly affected by the cleaning method (p?=?0.0289). Cleaning with AA method resulted in significantly higher bond strength than with SB (p?<?0.05) but similar to CP, PP and AW (p?>?0.05). All cleaning methods were effective in removing temporary resin cement from dentin surfaces. Air-abrasion with aluminum oxide particles was more effective than with sodium bicarbonate spray promoting adhesion between zirconia and dentin.  相似文献   

4.
Service life of debonded indirect dental restorations could be prolonged by recementation. This process requires removal of cement remnants from dentin. This study evaluated the effect of different mechanical cleansing protocols of dentin for recementation procedures on micro-shear bond strength (μSBS) of conventional and self-adhesive resin cements. The labial surfaces mandibular incisors (N=200) were ground with a low speed saw to expose the coronal dentin. The teeth were randomly divided into two subgroups (n: 100 per group) and received either (a) conventional (Panavia F 2.0, Kuraray, PAN) or (b) self-adhesive (Clearfil SA, Kuraray, CSA) resin cement. Resin cements were condensed into polyethylene molds incrementally and photo polymerized using an LED polymerization unit. Specimens were stored in distilled water at 37 °C for 24 h and subjected to μSBS (0.5 mm/min). Resin cement remnants on bonded dentin surfaces were removed using by (a) composite finishing bur (cb), (b) tungsten carbide bur (ob), (c) ultrasonic scaler tip (sc) or (d) pumice-water slurry (pw). Non-cleaned teeth acted as the control group (cn) (n: 20 per subgroup). After cleaning, the same cement type was rebonded simulating clinical recementation. Failure types were analyzed using optical microscope and Scanning Electron Microscope (SEM). Data (MPa) were analyzed using Wilcoxon Signed Ranks, Mann-Whitney U and Bonferroni tests (α=0.05). Overall, CSA (6.42±2.96) showed significantly lower results than that of PAN cement (7.88±3.49) (p<0.05). All cleansing protocols (4.29±2.17 to 5.82±2.5) showed significantly lower results than that of the control group (9.84±4.88) for PAN cement. For CSA cement, all cleansing protocols presented non-significant results (4.25±2.74 to 6.44±2.4 MPa) compared to control group (p>0.05) expect cb method (3.42±1.47) (p<0.05). Remnants of cements were detected on dentin surfaces in all groups at varying degrees. SEM showed that while using pumice-water slurry was the least effective for PAN, tungsten carbide bur was the most effective for both cements. All other methods showed similar cleansing efficacy. None of the cleansing protocols yielded to complete removal of resin cement rest on dentin upon recementation for both cements tested.  相似文献   

5.
This study evaluated the effect of air-abrasion parameters such as particle size, distance, and time on adhesion of resin cement to zirconium dioxide (Y-TZP) and tm phase transformation. Y-TZP blocks (N = 80) (In-Ceram YZ, Vita) (4 mm3?×?4 mm3?×?3 mm3) were assigned into eight groups (n = 10): air-abrasion with 30 μm (CoJet Sand, S30) and 110 μm (Rocatec-Plus, S110) silica-coated alumina particles, applied for either for 10–20 s (T = time), from a distance of 10–20 mm (D = distance), composing the following groups: S30T10D10, S30T10D20, S30T20D10, S30T20D20, S110T10D10, S110T10D20, S110T20D10, and S110T20D20. Resin composite (RelyX ARC) was bonded to Y-TZP blocks in polyethylene molds. The specimens were aged (10,000 thermal cycles and water storage for 90 days) prior to shear bond test. Failure types were analyzed under stereomicroscope and SEM, and phase transformation was calculated. Data (MPa) were analyzed using 3-way ANOVA and Tukey’s tests. Air-abrasion with 110 μm silica particles (10.96) presented significantly higher bond strength (p = 0.0149) compared to 30 μm (8.96). Time (p = 0.403) and distance (p = 0.179) parameters did not affect the results significantly. Air-abrasion with 110 μm particles (12.3) promoted higher bond strength than that of 30 μm (6.4) when applied for 10 s from a distance of 10 mm (Tukey’s). Failure types were predominantly adhesive. Phase transformation ranged between 30.3 and 35.9% for 30 μm particles and 23.8–43.7% for 110 μm particles. While the size of silica-coated alumina particles were more relevant parameter for resin cement adhesion to Y-TZP, time (up to 20 s) and distance (up to 20 mm) appear to be less pertinent.  相似文献   

6.
This study evaluated the microshear bond strength (μSBS) of a composite resin cement to a pre-hybridized dentinal substrate exposed to two kinds of temporary materials; the influence of different cleaning techniques was investigated. Dentinal surfaces were conditioned with an etch-and-rinse adhesive system to obtain an immediately-sealed (IDS) layer. Each surface was divided into quadrants and covered (1) with an eugenol-free (NE_Group) or (2) with a resin-based provisional agent (CL_Group). After storage, the temporary cement was removed by using one of the following methods: (1) Hand-scaler [S]; (2) Alumina air-abrasion [SB]; (3) Glycine-powder air-abrasion [Gly]; (4) D-Limonene chemical solvent [Or]. A new IDS layer was then created; polyethylene tubes were placed on dentin surfaces and filled with a dual-cure resin cement. A universal testing machine was used for the μSBS tests; conditioned surfaces were analyzed at SEM. Means and SD were calculated; a two-way ANOVA (a: 0.05) was performed to detect significant differences among groups. For NE groups, mean μSBS values (MPa) were: 21.6 ± 6.6 [NE_NoT]; 20.7 ± 4.5 [NE_Or]; 20.1 ± 6.6 [NE_SB]; 19.1 ± 5.3 [NE_S]; 17.8 ± 2.2 [NE_Gly]. No significant differences were found among tested treatments within NE (p: 0.5493). For CL groups, mean μSBS values (MPa) ranged from 15.8 ± 2.8 (CL_S50) to 19.4 ± 2.9 (CL_Gly). Cleaning of the substrate with glycine air-abrasion statistically improved μSBS values with respect to aluminum-oxide (CL_SB: 15.8 ± 2.8) or scaling (CL_S: 16.0 ± 2.4). The application of the IDS technique was effective for preservation of freshly-cut dentin from adverse effects of temporary materials. Glycine air-abrasion is suggested when a temporary resin cement is adopted.  相似文献   

7.
This study evaluated the effect of contamination media on the adhesion of resin cement to resin composites. Specimens of direct (DRC) (Quadrant Photo Posterior) and indirect resin composite (IRC) (Gradia) (N = 300, n = 15 per group) were prepared. Except the control group (C), the specimens of DRC and IRC were contaminated with one of the following media: (a) saliva (S), (b) silicon (SI), (c) dental stone (D), and (d) isolation medium (I). While one half was only rinsed with water, the other half was silica coated (30 μm SiO2, Siljet). All specimens were silanized (Monobond Plus) and coated with adhesive resin (Heliobond). Resin cement (Variolink II) was bonded to the substrates and photo-polymerized for 40 s. After thermocycling (x5.000, 5–55 °C), composite–cement interface was loaded under shear in a Universal Testing Machine (1 mm/min). Data (MPa) were analyzed using Univariate analysis, Tukey’s and Dunnett-T3 tests. Both contamination media (p = 0.000) and surface conditioning (p = 0.005) significantly affected adhesion to DRC and IRC. No significant difference was found between the DRC and IRC (without: p = 0.098; with: p = 0.084). Significantly lower results were obtained after SI (DRC: 0.66 ± 0.6; IRC: 0.8 ± 1.3) followed by I contamination (DRC: 2.1 ± 2.6; IRC: 0.8 ± 1.3) (p < 0.05). Regardless of contamination medium, surface conditioning significantly increased the results for both DRC (15.1 ± 6.1–23.6 ± 3.7) and IRC (20.3 ± 5.4–25.1 ± 3.6) (p < 0.05). Weibull distribution increased after surface conditioning for both DRC (without: 1.33–3.27; with: 2.55–9.34) and IRC (without: 1.07–3.75; with: 3.7–7.73). Predominantly adhesive (132 out of 150) failures were observed when surfaces were not conditioned.  相似文献   

8.
This study investigated the adhesion of resin composite to mineral trioxide aggregate based cements after different chemical and physico-chemical surface conditioning methods. Mineral trioxide aggregate based cements (Biodentine, ProRoot MTA, Imicryl MTA) were embedded in Teflon disks (N?=?180). After storing at 37?°C at 100% humidity for 72?h, substrate surfaces were polished using silicon carbide papers. Specimens were allocated to 3 groups to be conditioned with one of the following (n?=?15 per group): a) Adhesive resin (Clearfil SE Bond, CSE), b) Adhesive resin (Adper Single Bond 2, SB2), c) air-abrasion with 30?μm alumina coated with silica?+?silane?+?adhesive resin (ALB), d) no surface conditioning, control group (CON). Microhybrid resin composite (Filtek Z250) was applied on the conditioned substrate surfaces and photo-polymerized. After storage at 37?°C at 100% humidity for 24?h, adhesive interfaces were loaded under shear (1?mm/min) in a universal testing machine. After debonding failure types were analyzed. Data were analyzed using 2-way ANOVA and Tukey’s test (alpha = 0.05). SBS results were significantly affected by surface conditioning (p?<?0.05) and materials (p?<?0.05). Interaction terms were significant (p?<?0.05). Biodentine-ALB resulted in significantly higher SBS values (3.96?±?1.24) compared to those of other combinations, while ALB and SB2 resulted in no significant difference for ProRoot MTA and Imicryl MTA (p?>?.05). CSE (1.36?±?0.5- 1.98?±?0.76) did not significantly increase SBS for all MTA materials compared to the control group (0.8?±?0.52 – 2?±?0.91) (p?>?9.05). While CON groups resulted in exclusively adhesive failures, ALB presented the highest incidence of mixed failures for all materials tested (60–100%).  相似文献   

9.
The objective of this study was to evaluate the aging protocols and the specimen shape (sticks and dumbells) in the adhesive strength between dentin and resin composite during micro-tensile stress. The specimens were submitted to no aging protocol, mechanical cycling (using macro and micro-rotation methods), thermal cycling and micro-tensile test. The stress distribution for the two specimen shapes was performed by finite elements analysis. Data were submitted to 3-way ANOVA and Tukey Test (α = 0.05). There is no statistical difference considering the interactions among the factors: specimen shape, thermal cycling, and mechanical cycling. Also, the mechanical cycling, for both methods, micro or macro-rotation, and the thermal cycling did not affect the adhesive strength of the samples. However, the specimen with the dumbbell shape showed higher adhesive strength (16 ± 3 MPa) than the stick shape specimen (11 ± 2 MPa). The stress distribution in dumbbell shape was more homogeneous than in the sticks. It can be concluded that the aging protocols tested were not enough to degrade the adhesive interface and the dumbbell shape specimen is better to predict the real adhesive strength developed in the interface.  相似文献   

10.
Adhesion plays a critical role in the reliability of the micro devices in MEMS. However, the quality of the micro devices fabricated by electroforming technology is influenced by the poor adhesion performance. In order to improve the poor adhesion performance, from the view of the dislocation density, this paper investigates the effect of the current density on the adhesion originally. To research the effect of the dislocation density, electroforming experiments were processed under two different current densities. The dislocation density and the compressive stress of the electroforming layer was measured by XRD method. The dislocation was observed by TEM method. The adhesion strength was tested by scratch test. The experimental results show that the small current density reduces the dislocation density and the compressive stress, increases the adhesion. The mechanisms are that the small current density reduces the dislocation density. The low dislocation density can reduce the compressive stress and increase the adhesion. This work can improve the adhesion of the electroforming layer.  相似文献   

11.
Abstract

The aim of this work is to evaluate the effect of different adhesive protocols on the bond strength (SBS) of composite resin for indirect use to repairs of bulk-fill or conventional nanoparticulated composites. Forty-eight cylindrical specimens of composite resin for indirect use were prepared, aged, and randomly divided into four groups (n?=?12), a control group without any adhesion protocol, and three experimental groups: Silane?+?Scotch Bond Multipurpose adhesive (S?+?SBMP), Tetric N Bond Universal (TBU), and Single Bond Universal (SBU). The treated surfaces were restored using two different composite resins: Filtek Bulk-Fill or Filtek Z350XT. Then, the specimens were submitted to the SBS test, and the resultant data were analyzed with ANOVA on ranks test and Tukey’s test (α?=?0.05). There were no significant differences between the two types of resins used as repair material. For both resins, the groups treated with S?+?SBMP obtained the highest values (p?<?0.001). Groups TBU and SBU did not have statistically significant differences between them. Pre-treatment with a silane coupling agent and a layer of a hydrophobic adhesive can improve the bond strength of repairs performed on a composite resin for indirect use.  相似文献   

12.
Three types of bio-alkyd resins varies in their oil content and viscosity were added to EPDM rubber mix loaded by three bonding system consisting of Hexamethylenetetramine, Resorcinol and Hydrated silica (HRH). The mixes were charged by certain amount of thermal carbon black. Rubber dough was spread on polyester sheet fabric. The peel strength was used to measure the adhesion strength. The rubber-proofed fabric subjected to UV irradiation at different period of times. The dielectric constant, volume resistivity, thermal stability, water and air permeability of the various rubber coated fabric were examined. The addition of the bio-alkyd resin improved the various mechanical and physical properties of the rubber coated fabric materials. The suggested mechanism of bio-alkyd resin between EPDM and polyester fabric was also studied.  相似文献   

13.
This study evaluated adhesion of dual-polymerized resin cement to superficial dentin (SD) and deep dentin (DD) using one-step self-etch adhesives at varying pH. After smear layer was created on third molars (N?=?60, n?=?15 per group), adhesive resins, 1- Clearfil S3 Bond Plus-CBP (Kuraray) (pH: 2.3), 2- Bisco All Bond Universal-BAU (Bisco) (pH: 3.2), 3- Single Bond Universal Adhesive-SBU (3M ESPE) (pH: 2.7), 4- Nova Compo-B Plus-NCBP (Imicryl) (pH: 2.5–3), were applied on SD and DD. Resin cement (Variolink II, Ivoclar Vivadent) was adhered incrementally on the SD surfaces using polyethylene molds and photo-polymerized for 40?s from 5 directions (output: 1200?mw/cm2). After macroshear and microshear test, in order to achieve DD specimens, SD were removed 1?mm in the pulp direction and the same bonding and test procedures were performed. The specimens were kept at 37?°C for 24?h. The adhesion tests were conducted in the Universal Testing Machine and failure types were analyzed. The data were analyzed using Univariate ANOVA, Tukey`s, Kruskal-Wallis and Mann-Whitney tests (α?=?.05). Test method, dentin level and the adhesive resin significantly affected the results (MPa) (p?<?.05). After macroshear test, more incidences of cohesive failures in DD were observed with NCBP Plus. On SD, NCBP presented the highest results followed by BAU using macroshear test. On DD, NCBP presented the highest results followed by SBU. Not only the pH but the chemical composition affected adhesion especially to SD while in DD, the difference between the adhesive resins was less significant.  相似文献   

14.
PE/UPR玻璃钢界面粘接研究   总被引:4,自引:2,他引:4  
选用SGP10底涂处理剂及改性α-氰基丙烯酸酯胶粘剂,成功地用于水处理容器PE内胆和UPR玻璃钢复合材料层之间粘接,试验结果表明二者之间粘接牢固,这对于复合结构水处理容器质量,使用寿命有很重要意义。  相似文献   

15.
The aim of this study was to evaluate the influence of the frequency of mechanical pulses during mechanical fatigue aging on bond strength between glass fiber posts and root dentin. Fiber posts were adhesively cemented in 30 bovine roots and the core was built up with composite. All specimens were subjected to mechanical cycling (45° angle; 37 °C; 50 N; 2×106 pulses) at different frequencies: 2, 4, and 8 Hz. After the fatigue, each specimen was submitted to push out test. The bond strength was calculated for data analysis (one-way ANOVA, p = 0.05). The frequency did not affect the push-out (p = 0.7). The main failure mode was between dentin and cement in all groups. The mechanical pulses were not influenced by the bond strength between root dentin and fiber posts. Thus, it is possible to decrease the time-consuming in vitro tests involving posts without damaging the reliability of the test.  相似文献   

16.
This study assessed the effect of timing of core preparation and luting cement on adhesion of fiber-reinforced composite (FRC) posts on different levels of intraradicular dentin when cemented with either conventional dual-polymerized or self-adhesive resin cement. Single-rooted human teeth (N = 80) were endodontically treated and randomly divided into 2 groups (n = 40) according to resin cement: (a) Conventional dual resin cement (Variolink II, V) or (b) Self-adhesive resin cement (RelyX U200, R). They were further divided into two subgroups according to timing of core preparation (n = 20): (a) immediate (i) or (b) delayed (d). FRC posts (Cytec Blanco) were cemented and the roots were sliced into discs at the coronal, middle, and apical levels. Push-out tests were then performed in a Universal Testing Machine (1 mm/min). Data (MPa) were analyzed using three-way ANOVA and Tukey’s tests considering the factors ‘core preparation time’, ‘luting cement’, and ‘root level’ (α = 0.05). Type of luting cement (p < 0.001), time of core preparation (p < 0.001), and root level (p < 0.001) significantly affected the bond strength results. R cement was more significantly affected by core preparation time (Ri: 2.91 ± 1.1; Rd: 4.83 ± 1.68) compared to V cement (Vi: 2.92 ± 1.63; Vd: 2.65 ± 1.6) (p < 0.05). Coronal region demonstrated significantly higher bond strength values than those of middle and apical third in all groups (coronal: 4 ± 1.9; middle: 3.1 ± 1.4; apical: 2.4 ± 1.1) (p < 0.05). Adhesive failure between cement and dentin was the most frequent (64%) followed by adhesive failure between cement and post (18%). Delayed core preparation can improve bond strength of FRC posts to intraradicular dentin when cemented with self-adhesive cement compared to conventional dual-polymerized resin cement.  相似文献   

17.
Objectives: Evaluate the influence of composite resins viscosity and type of cure of the adhesive systems on the bond strength of composite resins submitted to artificial aging.

Methods: Dentin specimens (n = 240) were divided into 2 groups: Group GC: GrandioSO, and Group GF: GrandioSO Heavy Flow. These groups were subdivided into 6: FM: Futurabond M – light cured, FDCC: Futurabond Dual Cure – chemical cured, FDCL: Futurabond Dual Cure – light cured, CS3: Clearfil S3 – light cured, CDCC: Clearfil Dual Cure – chemical cured, and CDCL: Clearfil Dual Cure – light cured. Resin blocks were build up on the dentin surface. Half of samples on each group were cut to obtain resin/dentin sticks (1 × 1 mm). The other half was first submitted to thermomechanical aging. The dentin/resin sticks were submitted to microtensile bond strength test and the results were analyzed using three-way ANOVA and Tukey’s test (α = 5%).

Results: ANOVA showed significant influence for adhesive (p = 0.0000) and aging (p = 0.0001). No significant influence of the composite viscosity on bond strength was observed (ANOVA: p = 0.0861). For adhesive, the results of Tukey’s test (MPa) were CDCC: 13.44 (±5.13)a; FM: 14,01 (±2.71)a; CDCL: 14.51 (±4.98)a; FDCC: 18.66 (±7.13)b; CS3: 18.80 (±6.50)b; FDCL: 19.18 (±7.39)b. For aging: AGED: 14.99 (±6.32)a; NOT AGED: 17.87 (±5.97)b.

Conclusion: Composite resin viscosities did not influence on the bond strength. Type of cure of the adhesives had influence on the bond strength. Thermomechanical aging decreased the bond strength.  相似文献   


18.
Bis(3‐triethoxysilylpropyl) tetrasulfide (TESPT) was used to improve the interfacial adhesion between cotton fiber and natural rubber (NR). The crosslink density, interfacial adhesion, mechanical properties, dynamic mechanical properties, and morphology of NR/cotton fiber composites were investigated. The composites with TESPT had higher crosslink density, better mechanical properties, higher initial modulus, and higher yield strength than the composites without TESPT because of the difference in interfacial adhesion. The results of an interfacial adhesion evaluation, the high storage modulus and low damping values of the composites with TESPT, and the coarse surfaces of the pullout fibers implied the enhancement of interfacial adhesion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The purpose of this work was to study how viscose fiber behaves in polypropylene (PP) matrix when maleated polypropylene (MAPP) is used as a coupling agent. The influences of processing conditions on composite properties was of interest. Composites were characterized by FTIR and mechanical testing. The most notable result was the effect of the MAPP concentration on the tensile strength of the composites; the tensile strength increased from 40 to 69 MPa when MAPP was added in amounts up to 6 wt % of the fiber weight. The interaction between MAPP and fiber was confirmed with FTIR. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1895–1900, 2003  相似文献   

20.
It can be concluded by the study of UV primer formulations on sheet molding compound (SMC) substrates that all studied formulation parameters affect adhesion. Moreover, the dual cure approach can result in acceptable adhesion of UV primers on SMC substrates if the coating procedure and composition are well designed. Adhesion of UV cure primers as determined by the cross-cut test is significantly improved in formulations containing solvent. This is a result of enhanced wetting and interaction of the solvent with the SMC substrate, confirmed by contact angle and gravimetric swelling studies. Furthermore, sanded SMC surfaces demonstrated superior UV primer adhesion. This results from the increased surface area of the topography, confirmed by CSLM and the exposure of more oxygen moieties such as pigments and silanols at the air-substrate interface as confirmed by AFM and XPS. The UV films have a higher modulus with increasing resin functionality and resulting cross-link density which correlated with reduced adhesion in formulations without an added isocyanate functional UV monomer. This indicates that cure shrinkage may play a role in the adhesion of UV cure primers and will be investigated further. Also, the added adhesion that an isocyanate functional UV monomer provides results in a significant increase in the glass transition temperature (Tg) giving a glassier film at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号