首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate the bond strength of a universal adhesive system to dentin prepared with SiC paper or an Er,Cr:YSGG laser using different bonding strategies (etch-and-rinse versus self-etch mode). Ninety-six extracted caries-free, sound human molars were used. The teeth were longitudinally sectioned in the mesiodistal direction and were wet polished with 600-grit SiC paper to obtain a standardized flat dentin surface. All prepared teeth were randomly divided into two groups, according to the surface preparation method: GroupI:an erbium, chromium:yttrium,scandium, gallium, garnet laser; Group II: silicon carbide paper[SiC] (n = 48). Each group was then assigned into three subgroups according to the universal adhesive’s (Single Bond Universal) bonding strategies: (a) etch-and-rinse mode with phosphoric acid, (b) etch-and-rinse mode with a laser, (c) self-etch mode (n = 16). For surface preparation, the Er,Cr:YSGG laser was used at 3 W, 30 Hz with 140 μs pulse duration for 25 s. For etching mode, the laser was used at 1.5 W (60% air, 70% water). Cylinders of composite were fabricated on the bonding area and shear bond strength was determined using a universal testing machine. Failure modes were evaluated using a stereomicroscope. The data were analyzed using two-way ANOVA followed by the Bonferroni test (p < 0.05). Bonding strategies showed statistically significant differences in both the SiC-and laser-prepared groups (p < 0.05).Universal adhesive used in etch-and-rinse mode with acid showed significantly higher bond strength values than in self-etch mode (p < 0.05). The bond strength values did not differ according to the surface preparation method (p > 0.05). Irrespective of preparation method, using universal adhesive in etch-and-rinse mode with acid might improve dentin bond strength. Laser preparation did not affect the bond strength of the universal adhesive tested.  相似文献   

2.
To evaluate the effect of different surface treatment protocols on the microtensile bond strength (μTBS) of bulk-fill resin composite repairs. Thirty-five bulk-fill resin composite samples (Filtek Bulk Fill) were prepared (5 × 5 × 5 mm) and aged by thermocycling (X5000). Samples were randomly divided into five groups (n = 7): a control (no treatment) and four surface treatment groups (Single Bond Universal [SBU]; phosphoric acid (37%) + SBU; Er,Cr:YSGG laser + SBU; aluminum oxide sandblasting + SBU). Filtek Ultimate Universal composite was used as a repair material. After storage for 24 h in distilled water (37 °C), sticks were obtained and subjected to a μTBS test. The data (MPa) were analyzed by one-way ANOVA with a post hoc test (α = 0.05). Failure mode was evaluated using a light microscope (10×). There were significant differences between the groups (p < 0.05). The lowest bond strength values were obtained in the control group (p < 0.05). No significant difference was observed between Group II (universal adhesive) and Group III (acid etch + universal adhesive) (p > 0.05). The bond strength of Group II was significantly lower than that of the other surface treatment groups (p < 0.05). While Group III showed significantly lower values than those of the laser treatment group (Group IV), similar values were obtained with Al2O3 sandblasting group (Group V). The highest repair bond strength was obtained in Group IV (p < 0.05) which was not significantly different from the Al2O3 sandblasting group (p > 0.05). The predominant failure mode was adhesive. Treatment of aged bulk-fill resin composite surfaces with laser and Al2O3 sandblasting provided higher repair bond strength values.  相似文献   

3.
To assess the effect of Er:YAG and diode lasers on the shear bond strength (SBS) of adhesive systems to bovine dentin submitted to bleaching with a high concentration agent. One hundred and twenty bovine dentin fragments were used. Fragments were distributed into 12 groups (n = 10) considering the bleaching (present or not), surface post-treatment (untreated, Er:YAG laser or diode laser) and adhesive system (total-etching or self-etching). Specimens received two applications of 38% hydrogen peroxide. Er:YAG laser (2940 nm, 200 mJ, 4 Hz) and diode laser (980 nm, 1.5 W) were applied for 15 s on bleached dentin surface. Restoration was performed with resin using split matrix. Specimens were submitted to SBS test and data (MPa) were analyzed by ANOVA and Tukey’s test (α = 0.05). SBS of bleached specimens decreased in comparison with non-bleached (p < 0.05). The highest values were obtained for the post-treatment with Er:YAG laser (p < 0.05). Total-etching adhesive was superior to self-etching system (p < 0.05). The irradiation of bleached dentin with Er:YAG laser followed by the application of the total-etching adhesive had similar SBS to unbleached dentin with no post-treatment (control) (p > 0.05). Er:YAG laser post-treatment followed by the total-etching adhesive system improve the bond strength of restorative material to bleached dentin.  相似文献   

4.
Objective: The aim of this in vitro study was to evaluate the effect of surface treatments on the shear bond strength of resin cements to zirconia. Material and methods: Sintered zirconia specimens (n = 192) were divided into four different surface treatment groups: control (no treatment); airborne-particle abrasion; glaze layer and hydrofluoric acid (HF) application, and hot etching solution application. Then, each group was divided into four subgroups (n = 12), and three different resin cements were applied to the zirconia surfaces. The shear bond strength value of each specimen was measured after 5000 thermo cycles. The failure types were examined with a stereomicroscope and the effects of the surface treatments were evaluated with a scanning electron microscope. Results were analyzed using analysis of variance and Tukey’s post hoc tests (α = 0.05). Results: The surface treatment and resin cement type significantly affected the bond strength results (p < 0.05). For all resin cements, the airborne-particle abrasion treatment increased the shear bond strength values (p < 0.05). The glaze layer & HF application increased shear bond strength values for all groups, except the Single Bond Universal-RelyX Unicem Aplicap group (p < 0.05). The surface roughness values of airborne-particle abraded specimens were similar to comparable values for specimens from the control group and the hot etching solution group (p > 0.05). The glaze layer & HF application group produced the highest surface roughness values (p < 0.05). Conclusion: The results of this study recommend using the appropriate combination of surface treatment and adhesive/silane coupling agent to achieve durable zirconia-resin bonding.  相似文献   

5.
Objective: The purpose of this study was to evaluate the effect of different surface shapes formed by femtosecond (FS) laser on zirconia (Y-TZP)-resin cement shear bond strength (SBS). Background data: All ceramic restoration is used as an alternative to metal-ceramic restorations, due to its better aesthetics, strength, and toughness properties. However, bond strength of restoration to tooth and other materials is effective to long term success of the restoration, and to achieve it surface treatment is required on ceramic surface. Materials and methods: Forty square-shaped zirconia samples were prepared and assigned to four groups of 10. The details of the groups are as follows: Group A, square-shaped recessed surface; Group B, square-shaped projection surface; Group C, circular-shaped recessed surface; Group D, circular-shaped projection surface. The SBSs values were performed with a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed statistically using analysis of variance (ANOVA) and Tukey HSD multiple comparisons tests. Results: The one-way ANOVA results on SBSs of the zirconia material bonded with resin cement revealed significant differences among the groups (p < 0.05). The Tukey HSD test results revealed that Group B and D had significantly higher SBS values than other groups (p < 0.05), but there were no significant differences between each other (p > 0.05). Additionally, Group A and C had significantly lower values than other groups (p < 0.05). Conclusions: Different surface shapes formed by FS laser provided a significant increase in SBSs. The SBS values of projection surfaces of circular and square-shapes are greater than that of recessed surfaces of circular and square-shapes.  相似文献   

6.
This study aimed to evaluate the effect of intracanal placement of various medicaments on the bond strength of ProRooT MTA, Biodentine, and Endosequence root repair material (ERRM) putty. Ninety extracted human mandibular premolar teeth were decoronated and instrumented using Protaper Next rotary system and #1 to #6 Peeso reamers. The prepared teeth were randomly divided into six groups according to the intracanal medicaments: Group 1: double antibiotic paste (DAP) consisting of metronidazole and ciprofloxacin; Group 2: Triple antibiotic paste (TAP) with cefaclor; Group 3: TAPwith clindamycin; Group 4: amoxicillin and clavulanic acid (Augmentin®); Group 5: calcium hydroxide (CH); Group 6: control (no medicament) (n = 15). Parallel transverse sections were obtained in the coronal to the apical direction (4 slices/ tooth) and were divided into three subgroups according to the cements: Group A: ProRoot MTA; Group B: Biodentine; Group C: ERRM (n = 20 slices/subgroup). A push-out test was used to measure bond strength. Data were analyzed using two-way analysis of variance and Tukey’s post hoc test. The bond strength was significantly lower for DAP and TAPs than for Augmentin®, CH, or the control (p < 0.05). Biodentine and ERRM had significantly higher bond strength values than ProRooT MTA (p < 0.05) regardless of the intracanal medicaments tested, while no significant difference existed between Biodentine and ERRM (p > 0.05). While the application of DAP or TAPs decreased the bond strength, application of CH or Augmentin® did not. ERRM and Biodentine had higher bond strength values than ProRoot MTA.  相似文献   

7.
Aim: The aim of this study was to evaluate the effect of various surface treatments on the bond strength of veneering feldspathic porcelain to zirconia. Methods: Fifty yttria-stabilized tetragonal zirconia polycrystalline specimens were divided into five groups (n = 10) according to various surface treatments. The groups were as follows: Group 1: control group with liner application and no further surface treatment; Group 2: air-particle abrasion with 110 μm of alumina (Al2O3) particles; Group 3: grinding with a diamond disk; Group 4: Nd:YAG laser irradiation (the laser and the energy parameters were 10 Hz, and 2 W and 200 mJ, and the pulse duration (short pulse) range was up to 180 μs); Group 5: selective infiltration etching (SIE). After surface treatments, a liner application was performed for all surfaces according to the manufacturer’s instructions. Veneering porcelain was applied on zirconia surfaces using a Teflon mold. Shear bond strength was tested using a universal testing machine. The fractured surface morphologies were examined with scanning electron microscopy. The data were statistically analyzed using Mann–Whitney U and Kruskal–Wallis tests (α = .05). Results: The Megapascal values of the bonding groups were as follows: G1 = 8.62 ± 1.12, G2 = 13.87 ± 5.08, G3 = 12.31 ± 3.35, G4 = 17.32 ± 6.16, and G5 = 16.17 ± 4.55. Statistically significant differences were observed between the control group and the other groups (p < 0.05). Group 4 had the highest bond strength while G1 showed the lowest bond strength. No significant differences were found between the Nd:YAG, grinding, sandblasting, and SIE groups. Conclusion: Surface treatments had different effects on the shear bond strength of feldspathic porcelain to zirconia. Surface treatment techniques used in this study can be used on zirconia specimens prior to liner application to obtain an acceptable bond strength of veneering porcelain to zirconia. The effect of Nd:YAG laser irradiation and SIE techniques on bond strength of veneering ceramic to zirconia should be evaluated with further studies.  相似文献   

8.
Aim: To compare and evaluate the effects of different surface treatments on surface roughness and the microtensile bonding strengths of four different ceramics to dentin. Methods: 160 human molar teeth were used. The teeth were divided into four groups (n = 40). FC (Finesse), LC (IPS Empress Esthetics), LDC (IPS Empress e-Max) and MZC (Zirkonzahn Prettau) ceramic restorations were prepared. The specimens were divided into eight groups: (1) control, (2) air abrasion (AA), (3) HF acid etching (HF), (4) experimental hot etching (EHE), (5) Nd:YAG laser irradiation, (6) Nd:YAG laser + air abrasion, (7) Nd:YAG laser + HF acid, and (8) Nd:YAG laser + experimental hot etching. The surface roughness of the ceramics was determined with atomic force microscopy. After the cementation process, the specimens were thermal cycled and subjected to a microtensile bond strength (MBS) test. Two-way ANOVA and a Tukey’s test were used to analyse the surface roughness and MBS values of variance (p = 0.05). Results: HF acid etching showed the highest surface roughness in FC (p < 0.05). HF increased MBS in LC specimens where AA and HF increased MBS in LCD specimens. For the MZC specimens, AA and Nd:YAG + AA was effective in increasing the MBS (p < 0.05). Conclusion: Different surface treatments must be applied to different ceramics to improve the mechanical retention and MBS.  相似文献   

9.
Aim: The aim of the study was to compare the shear bond strength of three different types of recycled brackets on porcelain facets following different surface treatments. Materials and Methods: Eighty-four porcelain facets were produced by duplication of the labial surface of a maxillary right first premolar. Each porcelain facet was individually embedded in autopolymerizing acrylic resin. A thin coat of sealant was also painted on the bracket base and cured for 15 s before applying the paste. The bracket was then positioned on the porcelain facet, pressed lightly and light-cured. Each specimen was loaded into a universal testing machine using Nexjen software for testing, with the long axis of the specimen perpendicular to the direction of the applied force. Then, the brackets were rebonded following different surface treatments (Laser, hydrofluoric acid, sandblasting with Al2O3, and silane treatment). Kruskal–Wallis analysis of variance and post hoc Wilcoxon signed-rank tests were performed to test the differences in shear bond strength values (p < 0.05). The significance of differences in the ARI scores was analyzed with chi-square test (p < 0.05). Results: Statistical analysis indicated significant differences among surface treatment procedures (p < 0.0001). In addition, the effect of the first and second bonding factors on shear bond strength behaviors was shown to be significant for the brackets (p < 0.001). Conclusion: The use of sandblasting, HF treatment and silanization procedure could be used for improving the rebond shear bond strength of zirconia brackets to porcelain surface. However, rebonding the brackets to porcelain surfaces may not be recommended due to the dramatic decrease in bonding values.  相似文献   

10.
The aim of this study was to evaluate the shear bond strength (SBS) of orthodontic molar tubes bonded to amalgam restorations and enamel with four different area ratios, with and without the use of various metal primers. One hundred and fifty-six sound lower first molars were divided into five groups; control group (CG;n = 12) then divided into three subgroups: A, B, and C. Class V buccal amalgam restorations consisting of 25%(G1), 50%(G2), 75%(G3), and 100%(G4) of the basal areas of the molar tubes. Transbond XT Primer (TXTP;subgroup A), Alloy Primer (AP;subgroup B) and Reliance Metal Primer (RMP;subgroup C) (n = 12). Transbond XT was used as an adhesive material in all groups. Thermocycling was as 5 –55 °C, 1000 cycles. Data were analysed by one-way ANOVA and post hoc least significant difference tests (p < 0.05). Bond failure sites were classified using a modified Adhesive Remnant Index (ARI) system. SBS did not differ significantly among the three intermediate adhesives in subgroups of groups 1, 2, or 3 (p > 0.05); however, SBS was significantly higher in groups 4B and 4C than in group 4A (p < 0.05). Mean SBSs of groups 1 and 2 were significantly higher than others (p < 0.05). Mean SBS of group 3 was higher than that of group 4, but lower than that of the other groups. For ARI, significant relationships between CG and the intermediate adhesive groups were found (p < 0.05). Application of metal primers, such as AP or RMP, to sandblasted amalgam adjacent to etched enamel (25, 50, and 75%) did not improve bond strength significantly compared with the application of TXTP to amalgam and enamel.  相似文献   

11.
This study evaluated the bond durability produced by etch-and-rinse (E&R) adhesive systems in response to traditional and accelerated aging methods. Tridimensional dentin cavities were prepared on 80 bovine incisors, which were bonded with a 3-step E&R (Adper Scotchbond Multipurpose Plus – MP) and a 2-step E&R (Adper Single Bond 2 (SB) adhesive systems, and restored with composite. The samples were stored in water for 24 h, and then subjected to each of the aging methods (n = 10): control group – only 24-h storage (not exposed to additional aging), 6- and 12-month water storage, and 10% NaOCl storage. The push-out bond strength test was performed in a universal testing machine. Failure modes were evaluated by scanning electron microscopy. Data were analyzed by two-way ANOVA and Tukey tests (p < 0.05). Aging methods provided statistically similar bond strength for 3-step E&R adhesive system (p > 0.05). 10% NaOCl storage provides statistically similar bond strength values to 6- and 12-month water storage (p > 0.05), which were statistically lower than those provided by 24-h water storage (control group) (p < 0.05). Adhesive failures were more frequent. Aging methods provided different behaviors according to each adhesive system. The accelerated 10% NaOCl storage was effective to decrease bond strength only for 2-step E&R adhesive system.  相似文献   

12.
Adhesion of root canal filling materials to root dentin is important for the long-term success of the treatment. Push-out bond strength test is used to evaluate the adhesion capacity of root canal filling materials to root canal walls. The aim of the present study is to compare the bond strength of root canal filling materials to root dentin after irrigation with EDTA, chitosan and the combination of chitosan and PIPS irridation using push-out bond strength test. Forty-eight extracted teeth were resected until 13-mm long roots were obtained. Root canals were prepared with a size-25 OneShape instrument. Samples were divided into three groups each including 15 roots. Group 1: Canals were rinsed with 0.2% chitosan and subjected to laser irridation with PIPS at the same time. Group 2: Canals were rinsed with 0.2% chitosan. Group 3: Canals were rinsed with EDTA. All canals were filled with .06 tapered gutta-percha and AH-plus sealer. One-mm thick slices were taken from coronal, middle and apical one-thirds of the roots. Push-out bond strength was determined using a Universal Testing Machine. One root from each group was observed under SEM to evaluate the degree of smear removal. Statistical analysis was performed with Kruskall-Wallis test. Results showed that bond strength values were statistically similar in overall evaluation for all groups (p > .05). In segmental evaluation, group 1 revealed the highest bond strength in apical one-third compared to other groups (p < .05).  相似文献   

13.
To evaluate the influence of calcium-hydroxide(CH) with different vehicles on the push-out bond strength of different canal sealers to radicular dentin. 152 decrowned single-rooted human teeth were used. After preparation of root canals with nickel-titanium rotary files, 8 roots served as control groups. Then, the roots were divided as follows: (1) Calasept and (2) Surepaste (n = 72). Roots were further subgrouped according to the CH removal techniques: (1) %17 ethylenediaminetetraacetic acid (EDTA) + rotary file, (2) %17EDTA + hand file, and (3) %17EDTA (n = 24). Eight roots from each group sectioned longitudinally, divided into two pairs and photographed by stereomicroscope (n = 16). The remaining 16 roots in CH intracanal dressing groups were further divided into 2 subgroups according to the sealer used: (1) AH-Plus-jet and (2) Apexit-Plus (n = 8). Bond strengths of the root canal sealers to root canal dentin were measured using a push-out test setup. The data were statistically analyzed using multivariate analysis of variance p = 0.05. The push-out bond strength values were significantly affected by type of vehicle and the removal techniques (p < 0.05). The mean bond strength of AH-Plus-jet was significantly higher than Apexit-Plus, regardless of type of vehicle and the removal techniques (p < 0.05). There was no difference between vehicles on CH removal (p > 0.05). When examining the removal techniques, only irrigation with %17 EDTA left significantly larger amount of residue (p < 0.05). AH-Plus-jet showed better dislocation resistance than Apexit-Plus. Type of vehicle does not play a fundamental role in the degree of persistence of CH residues on the dentin walls. Instrumentation improves the removal efficiency of CH from root canal.  相似文献   

14.
Purpose: Bleaching agents are claimed to impair the bonding to the tooth structure when resin composite restorations are immediately performed. This study aimed to evaluate the effect of a neutralizing solution (10% sodium bicarbonate) or an antioxidant agent (10% sodium ascorbate) on the immediate or delayed (15 days) shear bond strength (SBS) of composite restorations performed on enamel. Seventy flat buccal enamel surfaces obtained from bovine incisors were divided into seven groups (n = 10): control group, unbleached enamel, restored (3M ESPE/Adper Single Bond 2/Filtek Z350XT) (G1); bleached, immediately restored (G2); bleached, delayed restoration (G3); bleached, antioxidant (sodium ascorbate), immediately restored (G4); bleached, antioxidant, delayed restoration (G5); bleached, neutralizing (sodium bicarbonate), immediate restoration (G6); bleached, neutralizing, delayed restoration (G7). Specimens were submitted to SBS test and examined after failure using scanning electron microscopy (SEM). Results were statistically analyzed with ANOVA/Tukey’s tests (5%). Bonding to enamel immediately restored after bleaching (G2) was significantly lower than G1 (unbleached enamel; p < 0.05). Applying the antioxidant or neutralizing agent significantly improved the bonding to enamel compared with G2 (bleached, immediate restored), irrespective of the restoration time (immediate or delayed) (p < 0.05). No significance was found between the two agents when applied after bleaching, and compared with the control group, regardless of evaluation time (p > 0.05). SEM images demonstrated adhesive failures in the bleached, immediately restored group (G2). G3–G7 exhibited majority of cohesive and mixed failure patterns. 10% sodium bicarbonate or 10% sodium ascorbate neutralizes the negative immediate and delayed effects of bleaching on bond strength of enamel bleached enamel.  相似文献   

15.
Purpose: To evaluate the wetting ability and the microtensile bond strength of adhesive systems in various depths of dentin. Materials and Method: 48 extracted human molars cut in half in buccolingual direction. Buccal and lingual surfaces were used to obtain deep (n = 48) and superficial (n = 48) dentin. Groups were divided into 4 subgroups: Self-etch (CSE), etch&rinse (SB), multi-mode self-etch (SAU) and multimode etch&rinse (EAU) adhesive systems. 3 consecutive contact-angle measurements were obtained: T0- 3 μl drop of distilled water on dentin; T1-Droplet of the adhesive; T2- Distilled water after polymerization of the adhesive. After composite build-ups, microtensile measurements were performed. Contact angle data were analysed with analysis of variance for repeated measures. Bond strength data were analyzed by repeated measures analysis of variance, comparisons were made according to the logarithmic values (p < 0.05). Results: The difference between groups was not significant regardless of dentin depth for all measurements (p < 0.05). All groups except CSE enhanced the wetting ability of the adhesive but reduced the wetting ability of distilled water after application of the adhesive (p < 0.05). Regarding adhesive systems, the groups showed no significant difference between bond strengths to various depths of dentin except SAU (p > 0.05); in SAU, bond strength to deep dentine were significantly higher than superficial dentin (p < 0.05). Regarding adhesives’ bond strength, CSE showed significantly greater values than the other groups (p < 0.05). Conclusion: The cavity depth does not affect the bonding ability for all adhesive systems; self-etch adhesive systems might be a better choice since different adhesives may influence the wetting ability and microtensile bond strength of the dentin substrates.  相似文献   

16.
To investigate the effects of Nd:YAG laser and 17% EDTA treatment on root-dentin mineral content using scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDX) and on shear-bond strength of epoxy-resin-based sealer (AH Plus) to root dentin. Twelve extracted premolars were decoronated and roots were sectioned, so that 24 two-root halves were obtained. Element levels of each half were examined by SEM/EDX, and AH Plus build-ups were created. After shear-testing, the test surfaces were reground and subjected to a 5.25% NaOCl. Two subgroups were created according to the surface treatment (n = 12): G1, with 17% EDTA for 5 min; G2, with the Nd:YAG laser. The element level analysis and shear-bond strength test were repeated for each half; the data were recorded (MPa) and analyzed (paired samples t-test). The EDTA treatment increased the O, C, Ca/P ratio (p < 0.001), decreased Ca, P content (p = 0.000), but did not change Na, Mg content (p > 0.05). The Nd:YAG laser increased O, Ca/P ratio (p < 0.001), and decreased the Ca, P content (p = 0.000). The C, Mg, Na content did not change with the Nd:YAG laser (p > 0.05). Both 17% EDTA and Nd:YAG laser had an effect on the mineral content of roots. The 17% EDTA treatment decreased the shear-bond strength of AH Plus to root dentin (p = 0.000); however, the Nd:YAG laser did not affect the bond strength (p = 0.238). Thus, an Nd:YAG laser can be used for disinfection of the root canal when AH Plus is used as a sealer.  相似文献   

17.
Objective: The aim of this in vitro study was to evaluate the bond strength of a new calcium silicate cement, Neo MTA Plus (Avalon Biomed Inc. Bradenton, FL, U.S.A) by comparing ProRoot MTA and Biodentine.

Material and Methods: Sixty dentin slices were instrumented to achieve a diameter of 1.3 mm. Group 1: white ProRoot MTA, group 2: Biodentine, group 3: Neo MTA Plus – G (powder mixed with gel), group 4: Neo MTA Plus – W (powder mixed with distilled water) were loaded into cavities. The push-out bond strength values were measured. Data were analyzed using Welch ANOVA with Bonferroni correction p = 0.05. Failure modes (adhesive, cohesive, and mixture) were analyzed.

Results: The highest bond strength value was recorded in Neo MTA Plus mixed with gel (5.23 ± 1.78 MPa), whereas white ProRoot MTA (2.57 ± 0.66 MPa) had the lowest. Bond strength values of Neo MTA Plus mixed either with gel or with distilled water were statistically different from both white ProRoot MTA and Biodentine (2.61 ± 0.70 MPa) (p < 0.05). Adhesive failure was predominantly observed in all groups.

Conclusion: Neo MTA Plus could be considered as alternatives to the ProRoot MTA and Biodentine due to its better performance in bonding to root dentin.  相似文献   

18.
Objective: To evaluate the effect of cavity disinfectants on the immediate microtensile bond strength (μTBS) of an etch-and-rinse adhesive to water- and ethanol-saturated sound and caries-affected dentin (CAD). Material and Methods: Thirty-six human molars were sectioned to expose 1/3 of the mid-coronal dentin surface. Sound (n = 18) and CAD (n = 18) specimens were divided into six groups each (n = 3): one positive control (sound), one negative control (CAD), and five experimental groups each. In the control group, dentin surfaces were bonded using an etch-and-rinse adhesive with a traditional water-wet bonding technique. In the experimental groups, ozone was applied before etching and chlorhexidine after etching. In the ethanol-wet bonding groups, acid-etched dentin surfaces were treated with ethanol. Following adhesive application and composite buildups, bonded specimens were sectioned to form sticks. Failure modes were analyzed using a stereomicroscope. Results: The water-wet bonded sound control group yielded the highest μTBS among all groups (p < 0.001). The lowest μTBS values were observed in the ozone groups (p < 0.05). The ethanol-wet bonded CAD group exhibited a higher μTBS than the water-wet bonded negative controls. Although compared to the positive control, chlorhexidine decreased the μTBS (p < 0.05), an increase with no significant difference was observed in the negative control (p > 0.05). Conclusions: The μTBS values of CAD were lower than those of sound dentin. Ethanol-wet bonding improved the μTBS of CAD. Ozone application reduced the μTBS in both sound and CAD; chlorhexidine improved the immediate μTBS after etching in CAD.  相似文献   

19.
Objective: This study investigated the bond strength of two resin cements (Panavia F 2.0 and Multilink N) to different CAD/CAM materials: resin nanoceramic (RNC; Lava Ultimate), hybrid ceramic (HC; Vita Enamic), zirconia-reinforced lithium silicate ceramic (ZLDC; Vita Suprinity), and lithium disilicate glass-ceramic (LDG; IPS e.max CAD HT).

Material and methods: CAD/CAM blocks of 2-mm thickness were sectioned with a slow-speed diamond-saw sectioning machine. The slabs were then embedded in autopolymerizing acrylic resin (n = 12), and resin cements were applied to the surface of the specimens. All specimens were stored in water for 24 h and subjected to 5000 thermal cycles. Bond strength was measured by means of the shear bond strength test. The data were statistically analyzed by two-way ANOVA and Tukey LSD post hoc tests.

Results: The results of the two-way ANOVA test indicated that the bond strength values varied significantly depending on the CAD/CAM restorative materials, resin cements, and interaction of these variables (p < 0.05). The RNC group showed the highest bond strength for Panavia F 2.0 (p < 0.05); there were no significant differences among other CAD/CAM materials for Panavia F 2.0 (p > 0.05). The LDG group showed the highest bond strength for Multilink N, it was followed by the ZLDC group (p < 0.05); there were no significant differences between RNC and HC groups (p > 0.05).

Conclusions: Choosing resin cements for restorations should be done carefully because bond strength values vary significantly depending on the resin cement and CAD/CAM restorative material.  相似文献   


20.
This study compared the shear bond strength of orthodontic brackets to laboratory-processed indirect resin composites (IRC) after different surface conditioning methods and aging. Specimens made of IRC (Gradia Indirect, GC) (thickness: 2 mm; diameter: 10 mm) (N = 80) were randomly assigned to one of the following surface conditioning methods: C – Control: no treatment; AA – Air-abrasion (50 μm Al2O3 particles); DB – Diamond bur and HF – Etching with hydrofluoric acid (9.6%). After adhesive primer application (Transbond XT), orthodontic brackets were bonded to the conditioned IRC specimens using adhesive resin (Transbond XT). Following storage in artificial saliva for 24 h at 37 °C, the specimens were thermocycled (×1000, 5–55 °C). The IRC–bracket interface was loaded under shear in a Universal Testing Machine (0.5 mm/min). Failure types were classified using modified adhesive remnant index criteria. Data were analyzed using two-way ANOVA and Tukey`s HSD (α = 0.05). Surface conditioning method did not significantly affect the bond strength results (p = 0.2020), but aging significantly decreased the results (p = 0.04). Interaction terms were not significant (p = 0.775). In both non-aged and aged conditions, non-conditioned C group presented the lowest bond strength results (MPa) (p < 0.05). In non-aged conditions, surface conditioning with DB (8.03 ± 0.77) and HF (7.87 ± 0.64) showed significantly higher bond strength results compared to those of other groups (p < 0.05). Thermocycling significantly decreased the mean bond strength in all groups (2.24 ± 0.36–6.21 ± 0.59) (p < 0.05). The incidence of Score 5 (all adhesive resin remaining on the specimen) was the highest in HF group without (80%) and with aging (80%) followed by DB (40, 70%, respectively). C groups without and with aging showed exclusively Score 1 type (no adhesive resin on the specimen) of failures indicating the least reliable type of adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号