首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiN/TaN multilayer coatings exhibit excellent mechanical properties when compared to single layer nitride coatings. In this study, TiN/TaN multilayer coatings were deposited on Mo-alloy and W-alloy substrates by CFUBMS. The structural and mechanical properties of coatings were analysed using XRD, EDS, SEM and a micro-hardness tester, respectively. To determine the adhesion and fatigue behaviour of the coatings were performed a scratch test in two modes that a standard mode with progressive loading and sliding-fatigue multimode operation with unidirectional sliding, respectively. A microscope was used to characterize adhesion and fatigue failures. The structural, mechanical, adhesion and fatigue properties of TiN/TaN multilayer coatings significantly changed depending on the substrate.  相似文献   

2.
《Ceramics International》2022,48(18):26342-26350
In this study, bilayer TiAlN/TiSiN and monolayer AlCrSiN ceramic films were grown on carbide cutting tool material by cathodic arc physical vapor coating (CAPVD) method to improve the structural/tribological properties and milling performances. The ceramic films were applied on cylindrical test samples and carbide end mills. The coated materials' structural, mechanical, and tribological properties were determined via scanning electron microscope (SEM), X-ray diffraction meter (XRD), tribometer, microhardness tester, and optical profilometer. DIN 40CrMnNiMo8-6-4 steel workpieces were machined by using a CNC vertical machining center to determine the actual working performance of the coated and uncoated cutting tools. The wear performance of the cutting tools after machining was determined by measuring the flank wear widths and mass losses. The hardness and adhesion results of the coated sample with bilayer TiAlN/TiSiN were higher than the coated sample with monolayer AlCrSiN. According to the scratch test results, the best adhesion results were obtained for TiAlN/TiSiN coating. The critical load value was determined as about 105 N. As a result, the wear rate value of the TiAlN/TiSiN thin film coated sample was lower. After machining, the mass loss of TiAlN/TiSiN coated tools was lower than AlCrSiN coated tools. In addition, the surface roughness value of the workpiece machined by the cutting tool coated with AlCrSiN was higher than the cutting tool coated with TiAlN/TiSiN.  相似文献   

3.
《Ceramics International》2022,48(5):6208-6217
Three different coatings, namely TiAlN, TiAlN (external)/NbN (internal) and NbN (external)/TiAlN (internal), were deposited on cemented carbides by arc ion plating. The comparative investigation conducted in this study elucidates the effect of the NbN layer and coating systems on the growth, mechanical properties, and tribological performance of the coatings. The results showed that the surface of the TiAlN and TiAlN/NbN coatings was smoother when TiAlN served as the external layer. The NbN/TiAlN coating, wherein NbN formed the external layer, had a much rougher but more symmetrical surface. With the introduction of the NbN layer, the increased micro stress induced a lower adhesion strength in the TiAlN/NbN and NbN/TiAlN coatings. The TiAlN/NbN and NbN/TiAlN coatings exhibited higher hardness and hardness/effective elastic modulus (H/E*). During the friction test, when the temperature was elevated to 700 °C, the tribological performance of the monolayer TiAlN coating was the lowest because of the TiO2-induced breakage of the dense tribo-oxide film. The NbN layer participated in the formation of a NbOx film at elevated temperatures, which was responsible for the high tribological performance of the two bilayer coatings. When the NbN layer was on the outermost layer and in direct contact with the elevated temperature atmosphere, the NbN/TiAlN coating generated a tribo-oxide film with high integrity, and its coefficient of friction decreased by 27% of that at room temperature. Therefore, the NbN/TiAlN coating exhibited the highest wear resistance at 700 °C.  相似文献   

4.
TiN/TiAlN multilayers of 2 μm thickness were successfully prepared by reactive DC magnetron sputtering method. XRD pattern showed the (1 1 1) preferential orientation for both TiN and TiAlN layers. XPS characterization showed the presence of different phases like TiN, TiO2, TiON, AlN and Al2O3. Cross sectional TEM indicated the columnar growth of the coatings. The average RMS roughness value of 4.8 nm was observed from AFM analysis. TiN/TiAlN coating showed lower friction coefficient and lower wear rate than single layer coatings. The results of electrochemical experiments indicated that a TiN/TiAlN multilayer coating has superior corrosion resistance in 3.5% NaCl solution.  相似文献   

5.
《Ceramics International》2019,45(11):14015-14028
To enhance mechanical properties and anti-corrosion capability of Ni-W alloy further, Ni-W/TiN nanocomposite coating has been co-deposited via pulse current co-deposition in this work. The effects of TiN nanoparticles and operating parameters on the structure and properties of the deposited coating were examined. It illustrated that the nanocomposite coatings are uniform, dense and crack-free, exhibiting dome-like or hill-valley like structure. The particles were homogeneously incorporated in the metallic matrix. RTC analysis indicated that the preferred orientation of Ni-W/TiN was (111) texture. The crystallite size was of 10–16 nm, indicating the formation of nanocrystalline structure. TiN concentration, duty cycle and frequency could influence the amount of TiN particle and W element in the coating, then regulating hardness and anti-wear behaviors. The low duty cycle and long deposition time could diminish the roughness of the coating. The inclusion of TiN nanoparticles in the nickel matrix could promote the nucleation of fresh nickel crystals and restrict the growth of already formed nickel grains, favoring the homogeneous growth and grain refinement of Ni-W crystals. The doped TiN particles would favor the preferred orientation (111) plane, enhanced the hardness, wear and corrosion resistance of Ni-W alloy. Electrochemical results illustrated that the best corrosion-resistant properties of the nanocrystalline coating could be obtained at TiN 30 g L−1, duty cycle of 20% and frequency of 60–200 Hz. The enhanced mechanical properties and corrosion resistance of Ni–W/TiN coating benefits its application in harsh corrosive environment.  相似文献   

6.
Coated tools are currently widely used tool technology in machining. The influence of tool coating on heat transfer has become an active field of research enjoying constantly increasing attention in the field of machining. This paper is devoted to the cutting temperature in machining H13 hardened steel with monolayer coated tools (TiN, TiAlN, and Al2O3) and multilayer coated tools (TiN/TiC/TiN and TiAlN/TiN). Equivalent composite thermal conductivity and thermal diffusivity of multilayer coated tools were calculated using the equivalent approach. The established heat transfer analytical models estimated coating temperature in turning. The effect of tool coating in steady and transient heat transfer was studied, as well as the cutting temperature distribution. It reveals that the tool coating material and coating thickness can influence the cutting temperature distribution of coated tool. Thermal conductivity of coating material affects the steady cutting temperature distribution, and thermal diffusivity of coating material affects the transient cutting temperature distribution of coating tools.  相似文献   

7.
8.
《Ceramics International》2020,46(11):18573-18583
The current study analyzes the surface, mechanical, biocorrosion, and antibacterial performances of a nanocrystalline TiN ceramic coating synthesized using cathodic arc-physical vapor deposition (PVD) on biomedical Ti6Al4V substrates. The surface hardness and modulus of elasticity were assessed using the microindentation method. The adhesion, friction coefficient, and antibacterial properties of the coating were evaluated. The in vitro corrosion of the prepared coated Ti alloy substrate was analyzed in simulated body fluid (SBF) via cyclic potentiodynamic polarization (CPP), dynamic electrochemical impedance spectroscopy (DEIS), and scanning vibrating electrochemical technique (SVET). The results demonstrated that a nanocrystalline TiN coating with a crystallite size of 10.33 nm and a thickness of 5 μm was formed with good adhesion on the alloy surface. The coating had an enhanced surface hardness of 38.63 GPa and a modulus elasticity of 358 GPa, and exhibited enhanced resistance to plastic deformation compared with the substrate – features that can enhance the service life of an implant. The antibacterial experiments indicated an upgraded antibacterial performance of the TiN coating compared to the bare alloy. The in vitro corrosion-resistance analyses confirmed the enhanced surface protective performance of TiN ceramic coatings against biocorrosion in SBF. The results showed higher impedance values in DEIS, a higher passive region in the CPP analysis, and a lower anodic current density in the SVET analysis compared with the bare substrate.  相似文献   

9.
《Ceramics International》2017,43(2):1911-1915
Ti(C, N)-based cermets were coated with TiAlN and TiAlN/CrAlN films by physical vapor deposition. The cross-sectional morphology was characterized by scanning electron microscopy (SEM), and the adhesive strength was evaluated by the scratch test. Cutting tests on the coated cermets were conducted on the different cutting conditions. The cutting performance and wear mechanism were analyzed with SEM and EDS. It is found that TiAlN coating has a better adhesion to the cermet substrate. The coated cermet inserts show better wear resistance than the uncoated ones. By contrast, the TiAlN coating suffers a slight abrasive flank wear. However, the TiAlN/CrAlN coating show more severe adhesive flank wear because of the Cr interdiffusion between the inserts and the workpiece. In addition, TiAlN coating is weak in resisting against oxidation wear, while the TiAlN/CrAlN coating has an excellent resistance to oxidation.  相似文献   

10.
《Ceramics International》2022,48(15):21305-21316
Sintered carbides are promising materials for surfaces that are exposed to extreme wear. Owing to their high service load, ceramic-based thin films are coated on carbides using different techniques. In this study, non-toxic and cobalt-free powder metallurgy-sintered carbide samples were coated with TiN, TiAlN, CrAlN, and TiSiN ceramic-based thin film coatings by cathodic arc physical vapor deposition. The microstructure (phase formation, coating thickness, surface roughness, and topography), mechanical properties (hardness, modulus of elasticity, and plasticity indices), and tribological properties (nanoscratch and wear behavior) of the thin film coatings were investigated. No cracks or defects were detected in these layers. The ceramic-based ternary nitride thin film coatings exhibited better mechanical performance than the TiN coating. The TiN thin film coating had the highest average surface roughness, which deteriorated its tribological performance. The ternary nitride thin film coatings exhibited high toughness, while the TiN thin film coating exhibited brittle behavior under applied loads when subjected to nanoscratch tests. The wear resistance of the ternary nitride coatings increased by nearly 9–17 times as compared to that of the TiN coating and substrate. Among all the samples investigated, the substrate showed the highest coefficient of friction (COF), while the TiSiN coating exhibited the lowest COF. The TiSiN thin film coating showed improved mechanical and tribological properties as compared to other binary and ternary nitride thin film coatings.  相似文献   

11.
A gradient transition multilayer hydroxyapatite/titanium nitride (HA/TiN) coating was prepared on the Ti-6Al-4V alloy by magnetron sputtering. The composition, surface topography, microstructure, adhesion strength and electrochemical properties of the as-deposited coatings were characterized by SEM/EDS, AFM, XRD, FT-IR and electrochemical workstation. The experimental results showed that the single TiN coating deposited at a partial pressure of nitrogen (N2) of 0.08?Pa had the best internal stress and tribological performance, and its volume loss was only 0.89% of that of Ti-6Al-4V alloy. The introduction of the TiN transition layer greatly improved the wear resistance of the Ti-6Al-4V alloy, and the adhesion strength of the HA layer to the substrate increased from 6.50?±?0.5?N to 11.70?±?1.2?N, an increase of 56%. The HA/TiN coating surface consisted of uniform hemispherical particles with dense structure and invisible defects (micro-cracks and pores). For the HA surface layer, the crystal structure and active hydroxyl (-OH) group was restored after heat treatment. Potentiodynamic polarization experiments indicated that the HA/TiN coating achieved the lowest corrosion current density and the most positive corrosion potential compared to the single TiN layer and Ti-6Al-4V alloy. In summary, it can be conclude that the gradient transition layer can well improve the mechanical properties and electrochemical behavior of the titanium alloy, and largely ensuring the stability of the surface bioactive coating.  相似文献   

12.
The adhesion between coating-substrate systems is an important factor in determining the performance and durability of coated engineering components. This paper reviews the microstructures and adhesion strength of titanium nitride (TiN) coating produced using two different processing methods: chemical vapor deposition and physical vapor deposition. Three methods to evaluate the adhesion strength of the coatings, namely the indentation test, laser spallation technique, and scratch test are presented and discussed in terms of their working principles, their advantages and disadvantages. The extrinsic and intrinsic factors influencing the adhesion strength of coating-substrate system, particularly for TiN coating, are also elaborated. The mechanisms and modes of coating failures in adhesion evaluation techniques are discussed with respect to the variation of coating-substrate system combination such as brittle, ductile, soft, and hard. Possible improvements on the adhesion strength of coating-substrate systems, focusing on the processing methods, compositions, and structures of coatings, are also reported.  相似文献   

13.
Nano-structured superhard coatings represent the state-of-the-art in the rapidly increasing worldwide market for protective coatings. In this study, the combination of nano-composite and nano-multilayered structures into the same coating was attempted. Nano-multilayered coatings of TiN/TiSiN and CrN/CrSiN were deposited on tool steel substrates by closed-magnetic-field unbalanced DC magnetron sputter ion plating. The coating structures were characterized using X-ray diffraction, atomic force microscopy, and scanning electron microscopy. Mechanical characterizations were performed including nano-hardness measurement, progressively-increasing-load scratch test, and wear test. TiN/TiSiN coatings have a nano-hardness of 40.2 GPa, whereas CrN/CrSiN coatings have a hardness of 30.9 GPa. TiN/TiSiN coatings also showed a higher critical failure force and scratch fracture toughness as well as better wear resistance and lower acoustic emission signal, indicating less total damage to the coatings.  相似文献   

14.
TiAlN film was deposited on Cr2O3-coated plasma-nitrided DAC-10 tool steel to obtained multilayer Cr2O3/TiAlN coating layer using cathodic arc deposition technique. The structural make-up of the coating was characterized using Atomic Force Microscopy (AFM) and X-ray diffraction methods, and the mechanical properties were evaluated using nanoindentation and nanoscratch test. The structural phases of the coating indicated the presence of crystalline CrO structure and cubic TiAlN phases. The coating showcased improved hardness (38 GPa), elastic modulus (387 GPa), and adhesion along with appreciable H/E (0.09) and H3/E2 (0.366 GPa) attributes. Further, friction-induced wear behavior of the coating was investigated against steel and Al2O3 counterbodies under dry sliding conditions. The wear behavior of the coating was greatly influenced by its hardness and deformation properties and frictional behavior of the counterbodies. More spikes and fluctuation were observed in the frictional curve against Al2O3 counterbody attributed to the emanation of TiO2, Cr2O3, and Al2O3 compounds due to dry sliding leading to the formation of flakes and delamination induced debris. Against the steel counterbody, the coating mainly formed a typical smooth glossy surface ascribed to the formation of Fe2O3 compound on the worn surface.  相似文献   

15.
In the work, TiAlN for physical vapor deposition (PVD), multilayer TiN-Al2O3-TiCN-TiN for chemical vapor deposition (CVD), and diamond-like carbon (DLC) for plasma-enhanced chemical vapor deposition (PECVD) were deposited on the cermet inserts. Characteristics and wear behaviors of the three coated cermets during dry cutting of 7075 aluminum alloys were observed. The results show that TiN-Al2O3-TiCN-TiN coatings have highest adhesion strength and hardness. At the cutting speed of 1100 r/min, the depth of 0.2 mm, and the feed rate of 0.1 mm/r, the three coated inserts show the best wear-resistant properties. In this case, TiN/Al2O3/TiCN/TiN shows the worst wear-resistant properties (value of the flank wear [VBB] = 0.062 mm), while DLC coatings show the most excellent wear-resistant properties (VBB = 0.046 mm). During the cutting of aluminum alloys, which have high plasticity and low melting point, adhesive wear dominate on the flank of the inserts. The thickest coating of TiN/Al2O3/TiCN/TiN results in the bluntest cutting edge, which form the most serious adhesive worn zone. For the TiAlN and DLC coatings, due to a smaller cutting force, the two coatings have much better wear resistance. Further, the self-lubricating properties of DLC show excellent effect on protecting the inserts. Thus, the DLC-coated cermets have the best wear-resistant properties. Further, the TiAlN-coated cermets have the widest wear-affected zone while the DLC coating has the narrowest.  相似文献   

16.
Nitride coatings have been generally applied on light alloys like titanium and aluminium to promote their multiple performances, including hardness, thermal stability and wear resistance. In this work, TiAlSiN/TiN multilayered (ML) coating and TiAlSiN single-layer (SL) coating were deposited on TC18 (Ti5Al5Mo5V1CrFe) alloy by Multi-arc ion plating technique. The microstructure and chemical composition of the coatings were evaluated by SEM, XRD and XPS. Additionally, hardness, adhesion and wear resistance were measured through nanoindentation, scratch spectrometer and ball-on-disk tribometer. The results present that both ML and SL coating contain three main phases of TiN, Al2O3 and Si3N4. Nevertheless, the adhesion of ML coating is 62.4 N, compared to that of the SL coating is 51.8 N. The parameter H3/E2 as an indication of plastic deformation to evaluate wear resistance shows that the ML coating has high hardness and high toughness concurrently. The tribological study indicated that the wear rate of the ML coated specimen was 1/7 of the SL coated counterpart.  相似文献   

17.
采用磁控溅射在4Cr5MoSiV热作模具钢表面分别沉积了CrN和TiN薄膜.通过扫描电镜(SEM)和电子能谱(EDS)分析了试样的微观结构和相结构,研究了CrN和TiN薄膜的抗氧化性能,并用压痕法测定了薄膜的力学性能.结果表明,CrN薄膜的高温抗氧化性能和结合强度高于TiN薄膜,但TiN薄膜的韧性比CrN薄膜好.  相似文献   

18.
The electrochemical behavior of single layer TiN, CrN, TiAlN and multilayer TiAlN/CrN coatings, deposited on steel substrates using a multi-target reactive direct current (dc) magnetron sputtering process, was studied in 3.5% NaCl solution. The total thickness of the coatings was about 1.5 μm. About 0.5 μm thick chromium interlayer was used to improve adhesion of the coatings. With an aim to improve the corrosion resistance, an additional interlayer of approximately 5 μm thick electroless nickel (EN) was deposited on the substrate. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of the coatings. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the corroded samples. The potentiodynamic polarization tests showed lower corrosion current density and higher polarization resistance (Rp) for the coatings with EN interlayer. For example, the corrosion current density of TiN coated steel was decreased by a factor of 10 by incorporating 5 μm thick EN interlayer. Similarly, multilayer coatings of TiAlN/CrN with EN interlayer showed about 30 times improved corrosion resistance as compared to the multilayers without EN interlayer. The porosity values were calculated from the potentiodynamic polarization data. The Nyquist and the Bode plots obtained from the EIS data were fitted by appropriate equivalent circuits. The pore resistance (Rpore), the charge transfer resistance (Rct), the coating capacitance (Qcoat) and the double layer capacitance (Qdl) of the coatings were obtained from the equivalent circuit. Multilayer coatings showed higher Rpore and Rct values as compared to the single layer coatings. Similarly, the Qcoat and Qdl values decreased from uncoated substrate to the multilayer coatings, indicating a decrease in the defect density by the addition of EN interlayer. These studies were confirmed by examining the corroded samples under scanning electron microscopy.  相似文献   

19.
A new composite matrix was developed for a cutting tool based on tungsten carbide ligated with cobalt (WC-Co) using sintering technique. The admixtures of niobium carbide, tantalum carbide, and titanium carbide with the WC-Co matrix aim to inhibit the grain growth of WC and to promote covalent bonding at the interface. The modified WC-Co tools were coated with titanium nitride and titanium carbonitride layers by CAE-PVD technique. To substantiate the performances of the new coating-substrate systems, we have performed X-ray diffraction, atomic force microscopy, and scratch test measurements to estimate: phase content, average crystallite size, average texture coefficient, residual stress level, coating thickness, average roughness, square mean root, fractal dimension, cohesive adhesion, and adhesive adhesion. The results enable the in-depth understanding of the coating growth mechanisms and provide an objective evaluation of the coatings adhesion to the new cutting tools matrix. The results provide evidence to support the potential of TiN and TiCN coatings to enhance the working performances of the composite WC-Co cutting tools and to differentiate their properties. TiCN coating is shown to be superior to TiN coating in terms of adhesion and thus represents a better alternative for coating the modified WC-Co composite matrix.  相似文献   

20.
《Ceramics International》2021,47(19):27487-27495
ZnO nanorod arrays (NRs) with a large number of sharp tips and uniform shapes were grown on the carbon cloth (CC) by a simple hydrothermal method. Titanium nitride (TiN) nanoparticles with various thicknesses were deposited on the ZnO NRs by magnetron sputtering to obtain ZnO/TiN core-shell arrays. Field emission (FE) performance of ZnO NRs show close dependence on TiN coating thickness. The turn-on field first decreases and then increases with increasing TiN coating thickness from 60 nm to 300 nm. The arrays with a design architecture can strike a balance between increased emission sites and limited field shielding effects. ZnO/TiN240 core-shell NRs have the lower turn-on electric field at 0.79 V/μm and the higher current densities at 9.39 mA/cm2. The field enhancement factor (β) of ZnO/TiN240 is about 3.2 times that of the bare ZnO NRs. On the other hand, the electrochemical properties were improved due to the formation of core-shell heterojunction on the ZnO/TiN interface and porous structure, which makes the ion and charge transport more convenient. Hence, this work not only revealed that the ZnO/TiN core-shell structure exhibited excellent improvement in both FE and supercapacitors applications, but also that growing arrays on CC was expected to achieve flexible display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号