共查询到20条相似文献,搜索用时 15 毫秒
1.
以管网造价年费用折算值最低为目标,采用粒子群算法对给水管网进行优化设计;首先对节点压力设置罚函数,对不满足压力要求的节点压力进行惩罚,以保证管网中各个节点都满足最小压力约束;由于工程中所用管径值全部都是离散值,算法对搜索得到的结果进行标准化处理,保证求得的管径组合方案符合实际要求;与给水管网优化设计中常用方法遗传算法相比,粒子群算法降低了计算复杂度,具有较好的求解性能,而且具有较快的收敛速度和全局搜索能力. 相似文献
2.
路径规划是煤矿井下搜救探测机器人自主导航的关键步骤,矿井是三维的非机构化的环境,机器人行走过程应该具有高度智能的路径规划,传统的自适应能力与处理非线性的问题能力较差,路径规划误差较大,提出基于粒子群并行优化的煤矿井下机器人路径规划方法,充分考虑井下的环境高低变化,采用栅格法对环境建模,将粒子群独立分布在不同容器中分别进行路径建模,不同容器中粒子分别进行优化操作;因为速度和最优子群被分别保留,在机器人路径规划实验阶段,路径规划的时间较传统方法降低20%,避障成功率高达95%,最优路径的出现概率能保持在99%,这种方法具有很强的指导性与实用价值。 相似文献
3.
4.
5.
针对模拟退火(simulated annealing,SA)算法收敛速度慢,随机采样策略缺乏记忆能力,算法内在的串行性使其具有并行化问题依赖等缺点,提出了基于粒子群优化(particle swarm optimization,PSO)算法的并行模拟退火算法。该算法利用粒子群优化算法中个体的记忆功能引导算法在解空间中开展精细搜索,在反向学习算法基础上设计新的反向转动操作机制增加了算法的多样性,借助PSO的天然并行性克服了SA的并行问题依赖性,并在集群上实现了多Agent协同进化的改进算法。对Toy模型的蛋白质结构预测问题进行了仿真实验,结果表明该算法能有效提高求解问题的质量和效率。 相似文献
6.
针对高维复杂优化问题在求解时容易产生维数灾难导致算法极易陷入局部最优的问题,提出一种能够综合考虑高维复杂优化问题的特性,动态调整进化策略的多种群并行协作的粒子群算法。该算法在分析高维复杂问题求解过程中的粒子特点的基础上,建立融合环形拓扑、全连接形拓扑和冯诺依曼拓扑结构的粒子群算法的多种群并行协作的网络模型。该模型结合3种拓扑结构的粒子群算法在解决高维复杂优化问题时的优点,设计一种基于多群落粒子广播-反馈的动态进化策略及其进化算法,实现高维复杂优化环境中拓扑的动态适应,使算法在求解高维单峰函数和多峰函数时均具有较强的搜索能力。仿真结果表明,该算法在求解高维复杂优化问题的寻优精度和收敛速度方面均有良好的性能。 相似文献
7.
8.
以保证全局收敛的随机微粒群算法为基础,文章提出了一种双群体随机微粒群算法——DB-SPSO。该方法采用两个群体同时进化,一个群体在进化过程中所出现的停止微粒由另一群体的微粒来代替,并和此群体中其余的微粒一起继续进化。通过对此算法的参数适用范围及收敛率进行讨论,给出了此算法的适用范围。其仿真结果表明:对于单峰函数和多峰函数,此算法都能够取得较好的优化效果。 相似文献
9.
基本粒子群优化算法(basic particle swarm optimization,简称bPSO)具有容易陷入局部极值,进化后期熟练速度慢,精度低等缺陷,而简化粒子群算法(simple particle swarm optimization,简称sPSO)在保证了熟练速度和精度的同时舍弃了速度项,使算法更加简练。本文提出了一种动态改变学习因子的简化粒子群算法。经过实验证明,该算法在寻优精度和收敛速度上具有明显的优势。 相似文献
10.
针对粒子群优化算法(Particle Swarm Optimization,PSO)寻优速度慢、收敛精度不高且搜索结果波动性较大的缺点,提出了一种自适应简化粒子群优化算法(Self-Adjusted Simplified Particle Swarm Optimization,SASPSO)。在每次迭代过程中,粒子只受全局最优解影响,且加入按一定规律分布的锁定因子,令粒子受影响的程度有规律性。同时,利用锁定因子和当前粒子位置令惯性权重自适应配置,更有效地利用惯性权重对粒子群优化算法的影响。引入4种近期提出的改进粒子群算法同时搜索不同维度时的18个基准函数,与SASPSO的搜索结果对比,并使用T-test进行差异性分析。为了进一步分析算法性能,统计5个改进算法搜索100维函数达到期望值时的成功率与平均迭代次数。实验结果证明,SASPSO在无约束问题寻优中的收敛速度、寻优精度有了明显提升,且搜索结果异常值较少,波动性弱。将SASPSO应用于机床主轴结构参数优化问题,结果显示SASPSO优化性能更好。 相似文献
11.
12.
提出了一种新二自由度PID调节器的设计方法。基于灵敏度函数,采用PSO优化算法对二自由度PID参数进行自适应调整,仿真结果和改进的遗传算法进行比较,系统同时具有良好的跟随性能和抗干扰能力,所设计的二自由度调节器具有很强的鲁棒性,证明了PSO算法的有效性。 相似文献
13.
14.
为提高色彩量化算法的效率,基于求解实优化问题时粒子群算法优于遗传算法这一事实,在基于遗传算法的色彩量化算法的基础上,设计了相应的适应度函数,给出了一种基于粒子群算法的色彩量化方案,并通过量化实例对算法的性能进行了比较。实验结果显示,基于粒子群优化算法的色彩量化方法在收敛速度方面明显优于基于遗传算法的色彩量化方法。 相似文献
15.
16.
华欣 《电脑编程技巧与维护》2009,(24):16-17,21
粒子群优化算法是一种启发式全局优化技术,一种基于群智能的演化计算方法。本文给出了多种改进形式以及与其他算法的比较,并提出了未来可能的研究方向。 相似文献
17.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。 相似文献
18.
基于粒子群优化算法的系统可靠性优化 总被引:1,自引:0,他引:1
刘家骏 《计算机与数字工程》2012,40(4):6-7,14
系统可靠性优化问题是典型的NP难题,建立了可靠性冗余优化模型,采用粒子群优化算法对其进行求解。通过对其它文献中仿真实例的计算和结果对比,表明了算法对求解可靠性优化问题的可行性和有效性。 相似文献
19.
无线传感网络移动节点位置并行微粒群优化策略 总被引:14,自引:0,他引:14
网络节点位置优化是无线传感网络研究的核心问题之一.无线传感网络通常由固定节点和少量移动节点构成,传统的虚拟力导向算法无法解决固定节点对移动节点优化的约束.该文针对这一问题,提出了基于并行微粒群算法的优化策略.微粒群算法具有适于解决连续空间多维函数优化问题、能快速收敛至全局最优解的特点.并行框架提高了算法的运行效率,降低了算法的运算复杂度,使算法能够满足无线传感网络的需求.通过并行微粒群算法搜索不同状态下无线传感节点的最优位置,使无线传感网络能够利用移动节点实现网络结构的动态重组,最大化网络覆盖范围,提高网络测量可靠性.实验证明,并行微粒群优化策略能快速有效地实现无线传感网络移动节点位置优化. 相似文献