首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetals such as methylal and ethylal are shown to be particularly effective additives in improving the strength of wood boards bonded with melamine‐ urea‐formaldehyde (MUF) resins, although they show some appreciable but lesser effect on other resins too, particularly phenol‐ formaldehyde resins. They equally allow a considerable decrease in resin loading, and thus, in melamine content, on the bonded wood panel and at parity of performance. Their development as additives is then primarily, but not only, targeted at the MUF adhesive resins. One‐third decreases in MUF adhesives loading at parity of performance or equally internal bond (IB) strength increases approximately up to 50% by addition of methylal are shown to be possible by laboratory particleboard as well as by thermomechanical analysis (TMA). The reasons for methylal and ethylal behavior were studied by a variety of techniques, including liquid‐ and solid‐ phase 13C‐NMR and could be mostly ascribed to the increased effectiveness and participation of the melamine to resin crosslinking due to its now preferentially homogeneous rather than heterogeneous reactions, consequences of the increased solubility in water afforded by the acetal cosolvents. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2561–2571, 2002  相似文献   

2.
Abstract

In this work it has been shown that the addition of small percentages of Na+-montmorillonite (Na-MMT) and organic modified-montmorillonite (O-MMT) nanoclay to thermosetting melamine-urea-formaldehyde (MUF) resins appeared to improve, considerably, their performance as adhesives for wood particleboard. X-ray diffraction (XRD) studies indicated that Na-MMT when mixed in small proportions, loses the periodic atomic structure during the curing of MUF resins. This can be interpreted as becoming exfoliated under such conditions. Thermomechanical analysis (TMA) on laboratory MUF-bonded particleboard indicated that small percentages of Na-MMT and O-MMT improved the internal bond strength imparted by the MUF adhesive to the panel, when tested dry and also, more importantly, when tested after 2 h of boiling. The increase in water resistance of the MUF-bonded panel was particularly noticeable. Furthermore, the addition of Na-MMT was shown to increase considerably the resistance of the MUF resin to abrasion. This is important from a wood surface finish point of view.  相似文献   

3.
Melamine urea formaldehyde (MUF) thermosetting wood adhesives have poor performance at elevated temperatures and humid conditions. PolyFox PF-151N polymer was mixed at different loadings (0.05, 0.1, 0.5, and 1%) with MUF to improve properties, especially water resistance and bond strength. The physical properties of the optimized MUF/PolyFox PF-151N resins were measured. In order to evaluate the quality of optimized MUF/PolyFox PF-151N resins, particleboards were produced and physical and mechanical properties were investigated.

The results show that it is possible to add PolyFox PF-151N up to 0.1% to the MUF resin without altering the mechanical properties of the commercial MUF. The mechanical properties of the particleboard panels bonded with the optimal MUF/PolyFox PF-151N (99.9/0.1 by weight) resin were considerably increased as compared to the panels glued with neat MUF resin. The use of PolyFox significantly reduced 2-h and 24-h thickness swelling compared to the control panels.  相似文献   

4.
A method based on the use of 13C-NMR relative peak intensity rations for different characteristic chemical groups, known or supposed to contribute to melamine-urea-formal-dehyde (MUF) resin strength and formaldehyde emission, is presented. The method relates results obtained by 13C-NMR analysis of liquid MUF resins with their strength and form aldehyde emission in the resin hardened state. Sets of correlation equations are presented which can be used to predict some of the physical properties of a hardened MUF resin by studying the 13C-NMR peak ratios of well-defined chemical groups in the liquid MUF resin. A true class of MUF resins, with characteristics all of their own, appear only to exist in the copolymers in which the mass ratio of M: U is in the approximate range 55 : 45 to 34 : 66, mass ratios outside this range resulting in resins which behave almost as pure melamine or as pure urea resins. Contrary to what was found for MUF glue mixes in which lower condensation pre-resins are used as scavengers and accelerators, in pure MUF resins, the ratios of NMR peaks of the downfield substituted and unsubstituted triazine and urea signals, while still important, do not exclusively dominate the correlation equations, other chemical groups such as methylene (Me), methylol (Mo), and methylene ether groups assuming considerable importance. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Low‐condensation phenol‐formaldehyde (PF) resins coreacted under alkaline conditions with up to 42% molar urea on phenol during resin preparation yielded PUF resins capable of faster hardening times than equivalent pure PF resins prepared under identical conditions and presented better performance than the latter. The water resistance of the PUF resins prepared seemed comparable to pure PF resins when used as adhesives for wood particleboard. Part of the urea was found by 13C‐NMR to be copolymerized to yield the alkaline PUF resin; whereas, especially at the higher levels of urea addition, unreacted urea was still present in the resin. Increase of the initial formaldehyde to phenol molar ratio decreased considerably the proportion of unreacted urea and increased the proportion of PUF resin. A coreaction scheme of phenolic and aminoplastic methylol groups with reactive phenol and urea sites based on previous model compounds work has been proposed, copolymerized urea functioning as a prebranching molecule in the forming, hardened resin network. The PUF resins prepared were capable of further noticeable curing acceleration by addition of ester accelerators; namely, glycerol triacetate (triacetin), to reach gel times as fast as those characteristic of catalyzed aminoplastic resins, but at wet strength values characteristic of exterior PF resins. Synergy between the relative amounts of copolymerized urea and ester accelerator was very noticeable at the lower levels of the two parameters, but this effect decreased in intensity toward the higher percentages of urea and triacetin. 13C‐NMR assignements of the relevant peaks of the PUF resins are reported and compared with what has been reported in the literature for mixed, coreacted model compounds and pure PF and urea‐formaldehyde (UF) resins. The relative performance of the different PUF resins prepared was checked under different conditions by thermomechanical analysis (TMA) and by preparation of wood particleboard, and the capability of the accelerated PUF resins to achieve press times as fast as those of aminoplastic (UF and others) resins was confirmed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 359–378, 1999  相似文献   

6.
A method based on the use of 13C-NMR relative peak intensity ratios for chemical groups known to contribute to melamine-urea-formaldehyde (MUF) and melamine-formaldehyde (MF) resin strength and formaldehyde emission is presented. The method relates results obtained by 13C-NMR analysis of liquid MUF and MF resins with their strength and formaldehyde emission in the hardened state. Correlation of different peak ratios with experimental results showed that, contrary to other formaldehyde-based resins, the NMR analysis for the MUF and MF resins needs only to take into account the triazine/substituted triazines and the urea/substituted ureas peak ratios to allow the proposal of equations correlating a single spectrum of the liquid resin with the physical properties of the boards bound with the same resin in its hardened state. Correlation equations are developed for both the case in which variation of the amine: formaldehyde molar ratio is directly induced at the resin preparation stage as well as the case in which it is induced at the glue-mixing stage, the latter by addition of different types of resin accelerators and resin scavengers. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
1H‐15N‐13C correlation NMR spectroscopy techniques developed to identify and characterize co‐polymer fragments in melamine‐urea‐formaldehyde (MUF) and phenol‐urea‐formaldehyde (PUF) model systems have been applied to industrially prepared MUF, PUF, and phenol‐melamine‐formaldehyde (PMF) resins. The NMR data confirm that co‐polymers form in a commercially prepared MUF resin manufactured by Momentive Specialty Chemicals Pty. Ltd. Spectra from PUF model reactions were compared with those from a PUF resin and it was determined that PUF co‐polymers did not form in the resin prepared using typical temperature and pH. Finally, NMR spectroscopy was used to identify and characterize PMF co‐polymer bonds in a phenol‐melamine‐urea‐formaldehyde (PMUF) resin prepared using a procedure from Momentive Specialty Chemicals Pty. Ltd. With these NMR techniques in hand, it is now possible to relate co‐polymer structures to properties of commercial thermosets. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Various salts derived from melamine and organic acids were prepared and used as melamine substitutes for melamine urea formaldehyde (MUF) resins. The synthesis of these melamine salts and a detailed characterization of their stoichiometry are described. All salts form 1 : 1 or 1 : 2 stoichiometries in a homogeneous reaction. They crystallize during cooling of the hot and diluted reaction mixture. Both 13C–NMR and 15N–NMR data are reported and point toward the formation of real ionic structures. Most salts have higher water solubility than that of pure melamine and are tested for their ability to substitute melamine in MUF resins. The mechanical and chemical properties of plywood panels made up of traditional MUF resins and mixtures of UF resins with melamine salts are investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1654–1661, 2001  相似文献   

9.
Urea formaldehyde, melamine formaldehyde, and melamine urea formaldehyde (MUF) are important industrial amino resins that find application in numerous diverse areas, most notably in the bonding of wood products. To understand the physical properties of these amino resins and, hence, optimize their performance, a knowledge of their chemical structure is necessary. This article reports the use of NMR spectroscopy to acquire this information in the solid and liquid states. 13C‐NMR experiments, supported and augmented by 1H‐NMR and 15N‐NMR results, showed that the two stages of resin synthesis, methylolation followed by condensation, occurred in each type of resin. However, in the various MUF samples analyzed, the second step appeared to be predominantly the self‐condensation of melamine and urea rather than the cocondensation of melamine and urea. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3504–3512, 2004  相似文献   

10.
Nine formulations were selected for evaluating the effect of different curing methods on pH and alkalinity or acidity of various structural wood adhesives. These included four phenol–formaldehyde (PF) resins with high pH, one phenol–resorcinol–formaldehyde (PRF) resin with intermediate pH, two melamine–urea–formaldehyde (MUF) resins, and two melamine–formaldehyde (MF) resins with low pH. The four curing methods used in the study were: (1) curing at 102–105°C for 1 h (based on CSA O112.6‐1977), (2) four‐hour curing at 66°C followed by 1‐hour curing at 150°C (based on ASTM D1583‐01), (3) curing at room temperature overnight (based on ASTM D 1583‐01), and (4) cured adhesive squeezed out from glue lines of bonded shear block samples. The effect of the different methods on pH and alkalinity/acidity of the cured adhesive depended strongly on the individual adhesives. For the PF, the alkalinity was different for the different formulations in the liquid form, while in the cured form, the difference in the alkalinity depended on the curing method used. The MF and the MUF were the adhesives most affected by the method used. In particular, the MUF showed much higher cured film pH values when cured by method 2 compared to the other three methods, while both the cured MF and MUF exhibited quite variable acidity values when cured with the different methods. The PRF showed reasonably uniform cured film pH but varying acidity values when cured with the different methods. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The addition of small percentages of Na+‐montmorillonite (NaMMT) nanoclay appears to improve considerably the performance of thermosetting urea‐formaldehyde (UF) resins used as adhesives for plywood and for wood particleboard. X‐ray diffraction (XRD) studies indicated that NaMMT loses the periodic atomic structure when mixed in small proportions in the acid‐curing environment characteristic of the curing of UF resins. This can be interpreted as becoming exfoliated under such conditions. The partly crystalline structure of the ordered zones of the UF resins is maintained but at a slightly lower level. Differential scanning calorimetry (DSC) indicated that NaMMT has an accelerating effect on the curing of the UF resin. It also appears to lead to a more controlled rate of crosslinking implying a more regular hardened network. The influence of NaMMT addition was particularly noted in plywood by the increase in water resistance of the UF‐bonded panel. In the case of wood particleboard even the dry internal bond strength of the panel, a direct indication of the performance of the resin, improved with small additions of NaMMT. A hypothesis and model of the reasons why such improvement to the performance of UF resins by addition of nanoclay should occur has been presented. This is based on the application of percolation theory to the networking capability of the clay nanoplatelets. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Phenol–urea–formaldehyde cocondensed (PUF) resins of high urea content were prepared by adding different forms of urea to the reaction system. The structure, curing behavior, and water resistance of the PUF resins were investigated, and their relations were also discussed by liquid 13C nuclear magnetic resonance (NMR) and different scanning calorimetry (DSC). The liquid 13C-NMR analysis showed that urea added in the form of methylolureas was well incorporated into the cocondensed resins by reacting with phenolic methylols to form cocondensed methylene bridges, and that the PUF resins had no free formaldehyde with any form. Unreacted urea and low molecule monosubstituted urea of PUF resins play a dominant role in the curing behavior and water resistance of resins. The peak temperature, curing time, and curing enthalpy (ΔH) value correspondingly increased, however, the water resistance of PUF resins decreased when urea content in PUF resins increased. The PUF cocondensed resin with up to 89.4 % (W U/W P) urea has relatively low cost, and moreover can pass the requirements of China Industry Standard for the exterior grade of structural plywood after 4-h cyclic boiling test.  相似文献   

13.
Hyperbranched poly(amidoamine)s (PAMAMs), exhibiting various levels of hydrophilicity, were used as modifiers for melamine urea formaldehyde (MUF) adhesives. The modification was achieved either with or at expense of sodium hydroxide during the last pH adjustment. Their apparent co‐condensability was expected from the measured gel times and further proved using Fourier transform infrared (FTIR) spectroscopy as well as 13C nuclear magnetic resonance (13C NMR). Utilization of these structures as modifiers for MUF, which are frequently used in particleboards production, resulted in manifold advantages. Considering the economic point of view, their use is more practical and cheaper with respect to dendritic structures. Additionally, their application in finite quantities as final additives, either immediately before the final use or at the last stage of preparation, yielded considerable upgrading of the dry internal bond (IB) strength of the produced particleboards. The improvement was extended to the resistivity to hydrolytic degradation as revealed by the wet IB strength and thickness swelling. The results were explained on the light of an extensive investigation on the resins using thermomechanical analysis (TMA) while taking into account the relevant hydrophilicity and degree of branching of each hyperbranched structure. POLYM. COMPOS., 36:2255–2264, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
A solid state 13C NMR study of hardened networks obtained by the reaction of blocked and nonblocked isocyanates (pMDI) with urea‐formaldehyde (UF) resins in water showed different results according to the temperature of the reaction. At high temperature, in water, both a nonblocked or an emulsifiable, blocked isocyanate, appear to crosslink with UF resins through the formation both of traditional methylene bridges connecting urea to urea and of urethane bridges. The latter have been confirmed by 13C NMR to form in water by reaction of the isocyanate ? N?C?O group with the hydroxymethyl groups of the UF resin. At ambient temperature, UF/pMDI resins where the pMDI is a emulsifiable blocked isocyanate, do not appear to form urethanes to any great extent but rather to crosslink through the usual UF resin urea to urea methylene bridges. Even in this case, when urethane bridges appear to be absent, evidence of crosslinking in water through reaction of the isocyanate with the ? NH2 and ? NH? amide of the UF resin has not been observed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 589–596, 2006  相似文献   

15.
The effects of posttreatments of particleboard adhesive‐type urea–formaldehyde resins were studied. The resins were synthesized with formaldehyde/first urea (F/U1) mol ratios of 1.40, 1.60, 1.80, 2.10, and 2.40 and then the second urea was added to give a final formaldehyde/urea ratio of 1.15 in alkaline pH. The resins were posttreated at 60°C for up to 13.5 h and the 2.5‐h heat‐treated resin samples were stored at room temperature for up to 27 days. Resins sampled during the posttreatments were examined by 13C‐NMR and evaluated by bonding particleboards. In the posttreatments, hydroxymethyl groups on the polymeric resin components dissociated to formaldehyde and reacted with the second urea, and methylene and methylene–ether groups were formed from reactions involving the second urea. Methylene–diurea and urea groups bonded to UF polymers were identified. As a result, the viscosity of the resins initially decreased but later increased along with the cloudiness of the resins. Bond‐strength and formaldehyde‐emission values of particleboard varied with posttreatment variables as well as with the F/U1 mol ratios used in the resin syntheses. The results would be useful in optimizing resin synthesis and handling parameters. Various reaction mechanisms were considered. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1896–1917, 2003  相似文献   

16.
In this work, the multiepoxy functional glycidyl ether (GE) modified urea‐formaldehyde (UF) resins were synthesized via a traditional alkaline‐acid process under low formaldehyde/urea (F/U) molar ratio. The synthesized resins were characterized by 13C magnetic resonance spectroscopy (13C‐NMR), indicating that GE can effectively react with UF resins via the ring‐opening reaction of epoxy groups. Moreover, the residual epoxy groups of GE could also participate in the curing reaction of UF resins, which was verified by Fourier transform infrared spectroscopy. The storage stability of GE‐modified UF resins and the thermal degradation behavior of the synthesized resins were evaluated by using optical microrheology and thermogravimetric analysis, respectively. Meanwhile, the synthesized resins were further employed to prepare the plywood with the veneers glued. For the modification on bonding strength and formaldehyde emission of the plywood, the influences of addition method, type, and amount of GE were systematically investigated. The performance of UF adhesives were remarkably improved by the modification of GE around 20–30% (weight percentage of total urea) in the acidic condensation stage during the resin synthesis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Urea–formaldehyde-bonded wood products are limited to interior nonstructural applications because of their poor durability under cyclic moisture or humid environments. The stability of solid-wood joints and particleboards can be enhanced by bonding with urea–formaldehyde adhesives modified with di- and trifunctional amines at an effective resin formaldehyde-to-urea mol ratio (F/U) of 1.6; however, particleboard formaldehyde emissions were not improved over those from boards made with unmodified adhesives and were unacceptably high. The relative effectiveness of selected modifications was investigated at resin form aldehyde-to-urea (F/U) molar ratios of 1.4 and 1.2 Solid-wood joints and particleboards made with modified adhesives, an unmodified adhesive, and a phenol formaldehyde (PF) resin were subjected to cyclic soak-dry (cyclic stress) treatments and moist-heat aging. Formaldehyde emissions from particleboards were also determined. At F/U 1.4, the resistance of solid-wood joints made with modified adhesives to cyclic stress and moist-heat aging was equal to that of PF-bonded joints and superior to that of joints bonded with unmodified adhesive. The resistance of particleboards made with modified adhesives was greater than that of boards made with unmodified adhesive but less than that of PF-bonded board. Solid-wood joints and particleboards made with F/U 1.4 resins performed better than did those made with F/U 1.2 resins. Particleboards made with F/U 1.2 resins had formaldehyde emissions well below the standard, and room temperature aging or bonding at high temperature reduced emissions substantially. © 1994 John Wiley & Sons, Inc. 1
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    18.
    Guangbo He 《Polymer》2004,45(20):6813-6822
    Phenol-urea-formaldehyde (PUF) resole resins were synthesized and analyzed by both liquid and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The liquid 13C NMR analysis indicated that the co-condensation reactions between the phenolic ring and the urea unit occurred during the synthesis of the resins. The addition of the urea component effectively reduced the free formaldehyde content in the resin systems. Methylene ether bridges in the resins were found to be mainly associated with the urea units. pH had significant influences on the structure and composition of the resins. Solid-state 13C NMR measurements of the cured resins suggested that the pH probably affected the curing mechanism. A longer time and a higher temperature can generally accelerate the curing process and increase the rigidity of the cured network.  相似文献   

    19.
    This study evaluated a new method of producing phenol–urea–formaldehyde (PUF) adhesives formulated differently under actual “in-situ” resin synthesis conditions. This was carried out by co-polymerizing urea formaldehyde (UF) resin with phenol–formaldehyde resin in the core layer of low molecular weight (LMW) phenol–formaldehyde (PF) resin treated Elaeis palm trunk veneers during the gluing process of Elaeis palm plywood. Matrix assisted laser desorption Ionization time of flight (MALDI-TOF) mass spectrometry (MS) illustrated and confirmed a series number of the phenol–urea co-condensates repeating unit in the prepared PUF resins which corroborated well with its mechanical properties (modulus of elasticity and modulus of rupture), bonding quality (dry test and weather boil proof or WBP test) and physical properties. A series of PF, UF and PUF resins oligomers forming repeating units up to 1833 Da were identified. Besides that, the solid state 13Carbon nuclear magnetic resonance (NMR) interpretation identified that the signal at 44–45 ppm and 54–55 ppm corresponding to methylene bridges were co-condensated in between phenol and urea in the PUF resin system. The 13C NMR investigation showed that the synthesis process of PUF resin contained no free formaldehyde elements. Furthermore, the proportion of urea and methylolureas in the mixture to synthesis PUF resin were sufficient and incorporated well into the formulation by reacting with LMWPF units to form co-condensed methylene bridges. This study showed a new and useful method to synthesize PUF resin during the gluing process of manufactured Elaeis palm plywood which can also enhance the performance of Elaeis palm plywood panels for structural instead of utility grade applications.  相似文献   

    20.
    In this study, four biorefinery technical lignins were used to synthesize lignin–phenol–formaldehyde (LPF) resin adhesives with a proposed formulation that was designed based on accurate analysis of the active sites in lignin with 31P nuclear magnetic resonance (NMR). The properties of the LPF resin adhesives and the plywoods prepared with them were tested. The structural features and curing behavior of the LPF resin adhesives were thoroughly investigated by solution‐ and solid‐state 13C NMR. Results indicated that the proposed formulation exhibited favorable adaptability for all four of these technical lignins for synthesis of LPF resin adhesives. High‐performance plywood with low emissions of formaldehyde could be successfully prepared with the synthesized LPF resin adhesives. All the LPF resin adhesives exhibited similar structure and curing behavior with the commercial phenol–formaldehyde (CPF) resin adhesive. However, the LPF resin adhesives showed relatively higher curing temperatures as compared with the CPF resin adhesive. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42493.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号