首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biowastes generated from agricultural industries constitute a new source for added value products that can be used in the polymer industry. Grape marc, a residue of the winery industry, is well‐known to be a rich source of polyphenols. The present work reports the use of polyphenol cocktail extracted from black Pinot grape marc as natural antioxidant in polyolefins. The purpose is to advance in the field of green stabilizer, by using an innovating approach based on the direct use of an efficient cocktail rather than a single original molecule to stabilize polymer. The antioxidant efficiency of polyphenol cocktail is measured against photo‐ and thermo‐oxidation conditions in the well‐known polypropylene polyolefin. Attention is paid to molecular structure evolution by rheology, and the efficiency to delay oxidation by‐product formation is monitored with infrared. The results confirm that cocktail approach is a promising route to develop green stabilizers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46607.  相似文献   

2.
Polypropylene (PP), low-density polyethylene (LDPE), and high-density polyethylene (HDPE) sheets were surface-modified by radio-frequency ammonia plasmas in order to improve the strength and durability of adhesive bonding, particularly under hot and humid conditions. Surface analyses by contact angle measurements, XPS (X-ray photoelectron spectroscopy), and FTIR-ATR (Fourier transform infraredattennuated total reflection) showed incorporation, upon plasma treatment, of both nitrogen- and oxygen-containing functional groups on the polyolefin surfaces, with similar surface compositions on modified LDPE and PP. Plasma-treated polyolefin samples bonded with a cyanoacrylate adhesive possessed a high shear bond strength in 'dry' conditions. On exposure to hot and humid conditions (immersion in 60°C water), the bond strength decreased with time in some cases while for other samples the lap shear strength was the same after exposure to the humid environment for 1 month compared with that under 'dry' conditions. Ammonia-plasma-treated HDPE specimens displayed the best strength retention upon water immersion. The excellent durability of the bond strength under humid conditions is indicative of covalent bonding between the cyanoacrylate adhesive and amine groups, which unlike physical bonding (e.g. van der Waals interactions) is not disrupted by the ingress of water molecules. It is also possible that the structure of the interphase is in the form of an interpenetrating network, obtained through penetration of the adhesive into the plasma-modified laycr, followed by covalent bonding and curing of the penetrated adhesive.  相似文献   

3.
探讨了改性丙纶经氩等离子体处理的工艺条件及处理后纤维的性能及表面形态。改性丙纶经氩等离子体处理后 ,失重率增大 ,回潮率增大 ,试样的回潮率为处理前的 14 0 %~ 40 0 % ,失重率 0 .3 5 %~0 .3 8%时回潮率最大。处理后丙纶表面产生较深的蚀点和凹槽。较佳的处理条件为时间 10min ,功率10 0W ,工作气体压力 5 0Pa。  相似文献   

4.
We study three new classes of olefin‐based polymer, low‐molecular‐weight homopolypropylene (LMW‐hPP), syndiotactic‐rich polypropylene (srPP), and random propylene polymer (RPP). RPP is a random propylene/ethylene copolymer. By blending LMW‐hPP with 20 wt % of a maleic anhydride (MA) functionalized srPP (MA‐srPP) or MA functionalized RPP (MA‐RPP) instead of a commercial MA‐iPP (maleic anhydride‐grafted‐isotactic polypropylene), adhesion to a polar substrate, such as polyester (Mylar), is greatly enhanced. Effects of crystallinity controlled by either stereoregularity or comonomer incorporation and molecular weight of these MA functionalized propylene‐based polymers on adhesive performance are discussed. To further understand the mechanisms of enhanced adhesion, Sum Frequency Generation (SFG) spectroscopy is used to evaluate the migration of MA‐srPP in LMW‐hPP towards the interface when contacting a polar sapphire substrate. It shows that the buried interface between the LMW‐hPP/MA‐srPP blend (wt ratio = 80/20) and sapphire has the same characteristic spectrum as the MA‐srPP/sapphire interface, suggesting the enrichment of MA‐srPP in the interfacial polymer when the blend is in contact with sapphire. Also, vibrational modes of C=O have been detected at both the blend/sapphire and MA‐srPP/sapphire interfaces, further indicating that the interfacial polymer contains MA groups. Besides Mylar, adhesion to the non‐polar iPP substrate is also studied. The adhesion mechanisms to these polar and non‐polar substrates are explained in terms of our adhesion model. Applications of these MA functionalized polyolefins and blends are envisioned in the tie‐layer and adhesive areas. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39855.  相似文献   

5.
Riku Uotila 《Polymer》2005,46(19):7923-7930
The morphology and mechanical properties of polypropylene/elastomer/silica composites were investigated with the aim of improving stiffness and impact resistance. Two different types of silica were tested: Precipitated silica and polymer grade microsilica (silica fume). The composites were compatibilized with commercial polypropylene and polyethylene containing maleic anhydride functionality as a means of controlling their microstructure and ultimately their mechanical properties. Comparisons were made with surface coated silica and hydroxyl-functionalized copolymers prepared with metallocene catalysts. The effect of adding the polymeric compatibilizers was assessed by morphology studies, thermal analysis and mechanical testing. Significant improvements in impact strength were obtained by tailoring the microstructure of polypropylene/elastomer/microsilica composites. With introduction of PP-g-MAH as compatibilizer, stiffness was enhanced simultaneously with impact strength. DSC curves of crystallization provided evidence to support the formation of different microstructures.  相似文献   

6.
7.
《Ceramics International》2020,46(2):1609-1614
Pd-doped SnO2 nanofibres were prepared by electrospinning and magnetron sputtering. It was found that the efficiency of gas sensing properties in these fibres depends primarily on the density of oxygen vacancies, which can be regulated by plasma treatment. We demonstrated that moderate plasma treatment can increase the oxygen vacancy as well as improve the gas sensing performance of SnO2. However, excessive plasma treatment led to the production of other substances that deteriorated the gas sensing performance. Furthermore, the best results for hydrogen gas sensing were obtained when the nanofibres were subjected to plasma treatment for 1 min. The fabricated material demonstrated a response of more than 53 for 500 ppm hydrogen at the optimum temperature (130 °C), which is a significant improvement as compared to sensors without plasma treatment. Evidently, plasma treatment is an effective method to further enhance the sensing properties of the fabricated nanofibres.  相似文献   

8.
Low pressure oxygen plasma has been used to improve the surface wettability of a polyurethane film. The modifications induced by the plasma treatment in the material were analyzed using contact angle measurements. X‐ray photoelectron spectroscopy technique was used for surface characterization of the plasma‐treated films. Atomic force microscopy and scanning electron microscopy were used to analyze topography changes due to the plasma‐etching mechanism. The results show a much better surface wettability of the film even for short exposure times, with a considerable increase in the surface energy values. As expected, functionalization with oxygen plasma is mainly because of surface oxidation with species like (C? O, C?O, OH, etc). An aging process with regard to polar groups rearrangement has been observed, thus promoting a partial hydrophobic recovery. Besides functionalization, the surface wettability of the material improves as a consequence of a slight increase in surface roughness because of the etching effect of oxygen plasma. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Outdoor weathering field trials performed with oxo‐degradable polyethylene (PE) thin films were conducted across temperate, grassland, and subtropical sites around Australia. It was found that a site factor, that was apparently independent of total solar dose and temperature, significantly impacted the rate and extent of photo‐oxidation. Controlled laboratory‐based accelerated aging trials of both PE film with no prodegradant and oxo‐degradable PE films (containing iron stearate) revealed that the rate and extent of PE photo‐oxidation did not correlate with temperature under the film or UV exposure, but was soil dependent. Under accelerated photo‐oxidative conditions, the time to reach embrittlement for a PE film aged over the soil from the temperate site (OM 8.4) was half (24.5 days) the time taken when aged over air (48 days). Further investigation revealed that humic acids and fulvic acids within soil organic matter may contribute to an increased rate of PE photo‐oxidation, possibly through the formation of volatile reactive oxygen species that may form under photo‐oxidative conditions. The presence of water also had a significant impact on the rate of photo‐oxidation. Overall, the impact of soil on PE photo‐oxidation was found to be complex and likely dependent at least in part on soil components that varied between different soil types, consequently influencing their photo‐chemistry. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42558.  相似文献   

10.
This paper describes our investigation of the effects of forced air plasma treatment on polypropylene and polyethylene. The morphology of the treated surfaces has been carefully examined using a variety of tools including optical profiling. The complex surface morphology was observed to change with increasing treatment and varying intensity of the treatment over the surface. Optimum treatment conditions have been deduced using surface energy determinations and can be compared with the morphological changes. Determinations of surface energy, both the polar and non-polar components, have been made after exposure to varying moisture conditions for varying times. Different results are obtained for different environments and from different materials. These results demonstrate that forced air plasma treatment is a highly effective means of increasing the surface energy of polymers, which can be long-lasting, provided the treated surfaces are kept in dry conditions.  相似文献   

11.
The in-service performance of polymers is greatly affected by processing. Mechanooxidation reactions are responsible for the early failure of processed polymers. During processing, the initial formation of macroalkyl and peroxyl radicals is followed by the formation of hydroperoxides which are chiefly responsible for further radical-generating and polymer degradative reactions. Therefore adequate stabilisation is essential for plastics products. Under normal processing conditions, most sulphur-containing antioxidants are partially converted to oxidation products at elevated temperatures. In most cases these reaction products are more effective antioxidants than the compound added initially. It is shown here that controlled oxidation processing of polymers in the presence of sulphur-containing compounds can provide a highly effective antioxidant system. This approach to processing can be used further to promote desirable polymer-antioxidant reactions.  相似文献   

12.
In general, plasma modified polymer surfaces tend to show short aging time and rapid hydrophobic recovery after treatment. To prevent reorientation from the surface to the bulk, appropriate crosslinking is necessary among the polymer chains. In this work, an Ar+ ion beam was used to provide crosslinking to the surface. Crosslinking was shown by spectroscopic ellipsometry, AFM, and FTIR. Contact angle measurements were performed to see the aging of the modified surfaces. The surface modified with Ar+ ion beam followed by RF plasma treatment exhibited reduced chain mobility and a highly stable hydrophilic surface. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1679–1683, 2000  相似文献   

13.
采用远程氩等离子体对聚四氟乙烯(PTFE)膜进行了表面改性研究,通过接触角测定仪、扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)等手段,分析研究了改性后材料表面结构、性能的变化。结果表明:PTFE表面经远程氩等离子体处理后,表面微观形态和表面化学成分均发生了变化,且处理效果优于常规氩等离子体。远程氩等离子体可以在一定程度上抑制电子、离子的刻蚀作用,强化自由基反应,使材料表面获得更好的改性效果。经远程氩等离子体短时间(100s)处理后,PTFE表面的F/C比例从1.97降至1.44,O/C比例从0.015增至0.086;表面的水接触角从108°减小到53°;表面自由能从22.4×10-5N·cm-1增加至52.3×10-5N·cm-1。  相似文献   

14.
The surface of cellulose triacetate (CTA) film was modified with gaseous plasma of several discharge power in the presence of Argon (Ar) gas at 0.5 torr pressure. After gas plasma etching, the surface structure of the films is analyzed by atomic force microscopy (AFM) and measured with peel strength. Furthermore, the wetting properties of the CTA film treated with Ar plasma are studied by contact angle measurement. Peel strength after plasma treatment was increased with increasing plasma treatment time. However, treatments of plasma greater than 7 min did not find an additional increase in peel strength, similarly to roughness and morphological changes of AFM. The water contact angle decreased for an initial treatment time due to the improved wettability of the film, but showed an increasing trend for a higher treatment time (7 min). These results show that Ar plasma treatment is a convenient tool for improving the adhesive properties of CTA film. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3963–3971, 2006  相似文献   

15.
The gas barrier properties of isotactic polypropylene (iPP) and high‐density polyethylene (HDPE) are both significantly improved by diamond‐like carbon (DLC) deposition and photografting polymerization using acrylic acid (AA) monomers. In fact, the gas barrier properties can be highly improved just by DLC or by AA‐photografting polymerization. The improvement observed by AA‐photografting polymerization is more pronounced than that by DLC deposition in our general experimental condition. In more detail, the oxygen barrier property of DLC‐deposited and AA‐grafted iPP is considerably improved by ~10 times when compared with that of neat iPP. As for HDPE, the oxygen barrier property is enhanced by nearly six times through DLC deposition and photografting polymerization. By observing the surfaces, 30 nm layer of DLC and 1.0 μm of AA‐grafted layer are firmly constructed on the polyolefins, which should contribute to the enhancement of the oxygen barrier property. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
The aim of this study was to tailor the surface properties of cellulose acetate membranes using low‐pressure plasma processing. Argon (Ar) plasma and Difluoromethane (CH2F2) plasma were used to control the surface wettabilities of cellulose acetate membranes. Optical emission spectroscopy was used to examine the various chemical species of low‐pressure plasma processing. In this investigation, the plasma‐treated surfaces were analyzed by X‐ray photoelectron spectroscopy, while changes in morphology and surface roughness were determined with confocal laser scanning microscopy. Ar plasma activation resulted in hydrophilic surface. CH2F2 plasma deposited hydrophobic layer onto the cellulose acetate membrane because of strong fluorination of the top layer. The results reveal low‐pressure plasma processing is an effective method to control the surface properties of cellulose acetate membranes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
High‐density polyethylene (HDPE) pellets were modified via atmospheric plasma treatment using nitrogen flushing. The new application of plasma treatment was introduced in this work, namely a batch treatment on plastic pellets just prior to its feeding to the extrusion process in comparison with the conventional surface treatment of the plastic sheet. The effect of treatment time (15–120 s) on wettability, chemical, thermal, and mechanical properties of the modified HDPE were investigated and compared with the typical surface‐treated HDPE and untreated HDPE. The pellet treatment distributed well the hydrophilicity groups so that both surface and bulk properties were improved. It showed an enhancement of wettability similar to surface treatment at short treatment time (15 s). Attenuated total reflection‐Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy revealed the presence of new chemical groups (nitrogen and oxygen up to 5 and 42 at %, respectively). In addition, crosslinked structure was also disclosed by solvent extraction (gel content of 3.5–5.5 wt % increased with treatment time) and significantly affected to decrease the crystallinity from 76% in the untreated sample to 63%. The decomposition process of the pellet treatment samples was delayed. Lastly, pellet treatment yielded advantages in remaining hydrophilicity during aging and improving mechanical properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43011.  相似文献   

18.
19.
In this study, several polyolefins, including different grades of polypropylene (PP), high‐density polyethylene, linear low‐density polyethylene, and low‐density polyethylene, were tested by thermogravimetric analysis (TGA), and the relationships of their melt flow index (MFI) and melt flow ratio (MFR) values to the thermogravimetry (TG) curves, differential thermogravimetry (DTG) curves, and activation energy of thermal degradation were investigated. Kinetic evaluations were performed by Friedman and Kissinger analysis methods, and the apparent activation energy values for the overall degradation of different grades of polyethylenes (PEs) and PPs were determined. We found that for the samples with lower MFIs, the thermograms shifted to higher temperatures. Meanwhile, a higher activation energy was needed for their thermal degradation. Also, for samples with higher values of MFR, as a means of molecular weight distribution, a lower activation energy was needed for their thermal degradation, and their TGA thermograms shifted to lower temperatures. The breadth of the DTG curves depended on the MFR in the PEs, although MFR had little effect on the DTG curves in the studied PP grades. Among all of the samples studied, the injection‐molding grades with medium MFIs and low MFRs degraded at higher temperatures and showed better thermal stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012  相似文献   

20.
李健  杨建忠 《粘接》2014,(3):61-63,57
为改善PBO纤维的润湿性,拓宽其应用领域,探究了空气低温等离子体处理对PBO纤维润湿性的影响。通过芯吸效应和接触角表征处理前后PBO纤维润湿性,并采用扫描电子显微镜SEM观察处理前后PBO纤维表面形貌,用X射线光电子能谱仪(XPS)对处理前后PBO纤维表面化学组成进行定性分析。实验结果表明,改性后PBO纤维芯吸高度大幅上升,接触角明显降低,并且在其表面产生明显刻痕,局部有剥离现象,改性后PBO纤维O、N元素含量均有所提高,PBO纤维润湿性明显增强。()  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号