首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bonding of resin cement to ceramic materials plays an important role in dentistry. The purpose of this study is to evaluate the effects of various surface treatments on the shear bond strength (SBS) of zirconia ceramic and metal alloy. A total of 60 specimens were prepared from Y-TZP ceramic and metal alloy. The specimens were divided into three subgroups (n = 10) that received different surface treatments for each material. An Er:YAG laser (ER), a femtosecond laser (FS), and air-borne particle abrasion (A) were employed as surface treatments. One specimen from each group was analyzed using a scanning electron microscope (SEM) at 500 x magnification after surface treatments. The self-adhesive resin cement was then bonded to the treated surfaces using a Teflon mold. The specimens were thermocycled for 5,000 cycles at 5–55 °C, and then the SBS test was performed. Kruskal–Wallis and Mann–Whitney U tests were used to determine the differences between the groups (p = 0.05), and failure modes were evaluated for each specimen. Statistical analyses revealed significant differences between the surface treatment methods. The mean SBS values of the air-borne particle-abraded groups were higher than those of the other groups. The femtosecond-irradiated groups of each material showed significantly higher SBS values than the Er:YAG-irradiated groups (p < 0.05). Within the limitations of this study, air-borne particle abrasion and the femtosecond laser were more effective than Er:YAG laser treatment.  相似文献   

2.
Aim: The aim of this study was to evaluate the effect of various surface treatments on the bond strength of veneering feldspathic porcelain to zirconia. Methods: Fifty yttria-stabilized tetragonal zirconia polycrystalline specimens were divided into five groups (n = 10) according to various surface treatments. The groups were as follows: Group 1: control group with liner application and no further surface treatment; Group 2: air-particle abrasion with 110 μm of alumina (Al2O3) particles; Group 3: grinding with a diamond disk; Group 4: Nd:YAG laser irradiation (the laser and the energy parameters were 10 Hz, and 2 W and 200 mJ, and the pulse duration (short pulse) range was up to 180 μs); Group 5: selective infiltration etching (SIE). After surface treatments, a liner application was performed for all surfaces according to the manufacturer’s instructions. Veneering porcelain was applied on zirconia surfaces using a Teflon mold. Shear bond strength was tested using a universal testing machine. The fractured surface morphologies were examined with scanning electron microscopy. The data were statistically analyzed using Mann–Whitney U and Kruskal–Wallis tests (α = .05). Results: The Megapascal values of the bonding groups were as follows: G1 = 8.62 ± 1.12, G2 = 13.87 ± 5.08, G3 = 12.31 ± 3.35, G4 = 17.32 ± 6.16, and G5 = 16.17 ± 4.55. Statistically significant differences were observed between the control group and the other groups (p < 0.05). Group 4 had the highest bond strength while G1 showed the lowest bond strength. No significant differences were found between the Nd:YAG, grinding, sandblasting, and SIE groups. Conclusion: Surface treatments had different effects on the shear bond strength of feldspathic porcelain to zirconia. Surface treatment techniques used in this study can be used on zirconia specimens prior to liner application to obtain an acceptable bond strength of veneering porcelain to zirconia. The effect of Nd:YAG laser irradiation and SIE techniques on bond strength of veneering ceramic to zirconia should be evaluated with further studies.  相似文献   

3.
Aim: The aim of the study was to compare the shear bond strength of three different types of recycled brackets on porcelain facets following different surface treatments. Materials and Methods: Eighty-four porcelain facets were produced by duplication of the labial surface of a maxillary right first premolar. Each porcelain facet was individually embedded in autopolymerizing acrylic resin. A thin coat of sealant was also painted on the bracket base and cured for 15 s before applying the paste. The bracket was then positioned on the porcelain facet, pressed lightly and light-cured. Each specimen was loaded into a universal testing machine using Nexjen software for testing, with the long axis of the specimen perpendicular to the direction of the applied force. Then, the brackets were rebonded following different surface treatments (Laser, hydrofluoric acid, sandblasting with Al2O3, and silane treatment). Kruskal–Wallis analysis of variance and post hoc Wilcoxon signed-rank tests were performed to test the differences in shear bond strength values (p < 0.05). The significance of differences in the ARI scores was analyzed with chi-square test (p < 0.05). Results: Statistical analysis indicated significant differences among surface treatment procedures (p < 0.0001). In addition, the effect of the first and second bonding factors on shear bond strength behaviors was shown to be significant for the brackets (p < 0.001). Conclusion: The use of sandblasting, HF treatment and silanization procedure could be used for improving the rebond shear bond strength of zirconia brackets to porcelain surface. However, rebonding the brackets to porcelain surfaces may not be recommended due to the dramatic decrease in bonding values.  相似文献   

4.
Purpose: The aim of this study was to evaluate the effects of different zirconia surface treatments on the bond strength of two self-adhesive resinous cements (SARC).

Methods: Two hundred and eight cylindrical specimens were obtained from Y-TZP zirconia (half with diameter 3.2 mm and half with 4.8 mm). After sintering and polishing, specimens were divided into four groups (n = 26), according to surface treatment: Control (no treatment); Sandblasting (Al2O3 particles); Rocatec (Al2O3 particles, tribochemical silica coating and silane application); Laser (Nd: YAG laser: 20 Hz, 100 mJ, 0.2 J/cm²). The surface roughness (Ra) was evaluated after the surface treatments, and the groups were divided into two subgroups (n = 13), according to the SARC tested: RelyX U200 and Bifix SE. The 2.2-mm cylinders were bonded to 4.8-mm cylinders and stressed until failure under shear using a universal testing machine. Bond strength and Ra were analyzed using ANOVA, and Tukey’s test (α = 0.05).

Results: Surface treatment was significant (p < 0.0001), but cement type (p = 0.73) was not. Related to roughness, significant differences were found for the treatment type (p < 0.0001), with laser being the treatment with higher Ra values.

Conclusions: Nd:YAG laser produced a rougher surface and a higher bond strength compared with sandblasting, silicatization, and control groups.  相似文献   

5.
Objective: The purpose of this study was to evaluate the effect of different surface shapes formed by femtosecond (FS) laser on zirconia (Y-TZP)-resin cement shear bond strength (SBS). Background data: All ceramic restoration is used as an alternative to metal-ceramic restorations, due to its better aesthetics, strength, and toughness properties. However, bond strength of restoration to tooth and other materials is effective to long term success of the restoration, and to achieve it surface treatment is required on ceramic surface. Materials and methods: Forty square-shaped zirconia samples were prepared and assigned to four groups of 10. The details of the groups are as follows: Group A, square-shaped recessed surface; Group B, square-shaped projection surface; Group C, circular-shaped recessed surface; Group D, circular-shaped projection surface. The SBSs values were performed with a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed statistically using analysis of variance (ANOVA) and Tukey HSD multiple comparisons tests. Results: The one-way ANOVA results on SBSs of the zirconia material bonded with resin cement revealed significant differences among the groups (p < 0.05). The Tukey HSD test results revealed that Group B and D had significantly higher SBS values than other groups (p < 0.05), but there were no significant differences between each other (p > 0.05). Additionally, Group A and C had significantly lower values than other groups (p < 0.05). Conclusions: Different surface shapes formed by FS laser provided a significant increase in SBSs. The SBS values of projection surfaces of circular and square-shapes are greater than that of recessed surfaces of circular and square-shapes.  相似文献   

6.
Objective: The aim of this in vitro study was to evaluate the effect of surface treatments on the shear bond strength of resin cements to zirconia. Material and methods: Sintered zirconia specimens (n = 192) were divided into four different surface treatment groups: control (no treatment); airborne-particle abrasion; glaze layer and hydrofluoric acid (HF) application, and hot etching solution application. Then, each group was divided into four subgroups (n = 12), and three different resin cements were applied to the zirconia surfaces. The shear bond strength value of each specimen was measured after 5000 thermo cycles. The failure types were examined with a stereomicroscope and the effects of the surface treatments were evaluated with a scanning electron microscope. Results were analyzed using analysis of variance and Tukey’s post hoc tests (α = 0.05). Results: The surface treatment and resin cement type significantly affected the bond strength results (p < 0.05). For all resin cements, the airborne-particle abrasion treatment increased the shear bond strength values (p < 0.05). The glaze layer & HF application increased shear bond strength values for all groups, except the Single Bond Universal-RelyX Unicem Aplicap group (p < 0.05). The surface roughness values of airborne-particle abraded specimens were similar to comparable values for specimens from the control group and the hot etching solution group (p > 0.05). The glaze layer & HF application group produced the highest surface roughness values (p < 0.05). Conclusion: The results of this study recommend using the appropriate combination of surface treatment and adhesive/silane coupling agent to achieve durable zirconia-resin bonding.  相似文献   

7.
This study was aimed to observe the relationship between the different surface treatments and the bond strength of both composite based adhesive cement and zirconia ceramic. Thirty-two zirconia ceramic discs were fabricated by following the instructions of manufacturer (5 × 5 × 1.5 mm). Four subgroups were obtained from the specimens according to the specified surface treatments respectively: (a) C: control groups: no treatment; (b) SB: sandblasting with 125 μm aluminum oxide particles for 10 s; (c) SC: silica coating for 10 s; (d) Nd :YAG laser . The composite resin specimens Panavia F and Clearfil SA were introduced and polymerized to the treated bonding areas. Afterwards the specimens were stored in distilled water at 37 °C during 24 h, and the shear test was applied. The data were statistically analyzed by ANOVA and Duncan tests. The bond strength was stated significantly higher in silica coating/Panavia F group (23.35 MPa). The lowest bond strength was stated in control groups cemented with Clearfil SA (12.25 MPa). As a result it was determined that the bond strength has affected the both surface treatments and cement types (p < 0.001). The silica coating –treated zirconia ceramic recorded a significant increase in mean bond strength values.  相似文献   

8.
The aim of this study was to compare the effects of different in-office bleaching techniques and acid/laser etching on bond strength of orthodontic brackets. Ninety-six extracted human premolar teeth were used in the study. The teeth were randomly divided into four groups according to different in-office bleaching techniques (n = 24); Group I: Diode laser-assisted bleaching, Group II: Er:YAG laser-assisted bleaching, Group III: In-office bleaching with LED, Group IV: Unbleached (control). After the samples were kept in artificial saliva for 2 weeks, each group were randomly divided into 2 subgroups according to etching methods; aacid etching; blaser etching. For laser etching Er,Cr:YSGG laser was used at 1.5 W, 15 Hz with 140 μs pulse duration for 20 s. For acid etching, 37% phosphoric acid was used for 30 s. The shear bond strength testing was performed using Instron Testing Machine with a crosshead speed of 1mm/min. Adhesive Remnant Index (ARI) scores were also measured. Data was analyzed using two-way ANOVA, Bonferroni, Kruskal Wallis and Mann Whitney U tests (p < 0.05). No statistically significant differences were found between bleaching groups and control (p > 0.05). There were statistically significant differences between acid and laser etching within each group (p < 0.05). Acid etching caused significantly higher bond strength values (p < 0.05). While no statistically significant differences were observed between the ARI scores of bleaching and control groups (p > 0.05), acid etching caused statistically higher ARI scores than laser etching groups (p < 0.05). In conclusion in-office bleaching either with LED or laser before bracket bonding did not affect bond strength. Prior to bracket bonding, acid etching of enamel caused higher shear bond strength values than laser etching.  相似文献   

9.
Xin Yang 《应用陶瓷进展》2019,118(1-2):70-77
ABSTRACT

This study was designed to evaluate the effect of different treatments on the zirconia/resin shear bond strength (SBS) using commercial one-bottle universal adhesive. Zirconia discs with different surface treatments (blank control; airborne-particle-abrasion; glazing) were bonded to the bovine enamel surfaces using one-bottle universal adhesive. All specimens were tested for SBS (MPa) before and after 10000 thermocycles. Statistically analysis were conducted by using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05). Airborne-particle-abrasion group showed higher SBS (36.19 ± 11.86) than control group (14.98 ± 5.90) and glazing group (10.63 ± 5.39) (p < 0.05). After thermocycling test, the SBS significantly decreased for control group (8.84 ± 2.55) and glazing group (6.18 ± 2.78) while not for airborne-particle-abrasion group (41.5 ± 7.95). One-bottle universal adhesives combined with airborne-particle-abrasion showed quite high SBS of zirconia/resin, which was appropriate for bonding of zirconia restoration.  相似文献   

10.
Achieving adhesion between resin cement and zirconia requires pretreatment of the surface. This in vitro study aimed to evaluate the effect of femtosecond laser beam angle and the shape of the formed surfaces, on the roughness and shear bond strength (SBS) of resin cement to zirconia ceramic. Seventy Y-TZP ceramic specimens were divided into seven groups (n = 10). A femtosecond laser irradiation was performed on the ceramic surface of three shapes (spiral (SP), square (SQ) and circular (CI) and at two angles (30 and 90°) to give SP-30, SQ-30 and CI-30 and SP-90, SQ-90 and CI-90, respectively. After treatment, the surface roughness of all specimens was evaluated using a profilometer. One specimen from each group was analysed using a scanning electron microscope. The bonded specimens were thermocycled 5000 times and then an SBS test was performed. Kruskal-Wallis and Mann-Whitney U tests were used to analyse surface roughness and SBS values. The control group had statistically lower surface roughness (Ra) values than the treated groups (p < 0.05). SP-30 and SQ-30 laser treated specimens showed higher Ra values than the other specimens. Statistically significant SBS values (p = 0.000) were observed between the groups. All laser treated samples showed greater SBS compared to the control group. SP-30, SQ-30 and SQ-90 groups showed the highest SBS values. Within the limitations of this experimental study, the highest mean values for Ra and SBS were achieved with SP and SQ surfaces using a 30° angle laser beam.  相似文献   

11.
The aim of this study was to investigate the effect of different surface pretreatment methods on the bond strength of veneering resin to polyetheretherketone (PEEK) based aesthetic frameworks. Five hundred and forty PEEK disks were fabricated and divided into 6 pretreatment groups (n = 90); (C) untreated control group, (B) airborne-particle abrasion, (S) silica coating, (L) etching with Er:YAG (erbium-doped yttrium aluminium garnet) laser, (LB) etching with Er:YAG laser and airborne-particle abrasion and (LS) etching with Er:YAG laser and silica coating. After topographical surface examinations, specimens were conditioned with adhesive and veneering resin was polymerized onto the PEEK specimens. Twenty-four hours after veneering, specimens were subjected to thermal aging. Afterwards, shear bond strength (SBS) tests were performed and the obtained data were analyzed with one-way ANOVA and Tukey test at a significance level of α = .05. Group B (1.58 ± 0.15 μm), Group L (1.79 ± 0.29 μm), Group LB (2.20 ± 0.23 μm) and Group LS (2.31 ± 0.52 μm) demonstrated significantly higher surface roughness (SR) values compared to Group C (1.03 ± 0.11 μm). Group B (10.97 ± 2.88 MPa), Group S (12.07 ± 2.82 MPa), Group LB (12.09 ± 2.08 MPa) and Group LS (13.14 ± 1.45 MPa) demonstrated significantly higher SBS values compared to Group C (6.35 ± 1.21 MPa). Airborne-particle abrasion, silica coating or their combined use with Er:YAG laser system establish durable bond between PEEK and resin; however, only Er:YAG laser treatment has no positive effect on resin-PEEK bond.  相似文献   

12.
Objectives: The purpose was to investigate the effect of different surface treatments and bonding agents on the repair bond strength of different resin-based restorative materials by microtensile bond strength (μTBS) testing protocol. Materials and Methods: 24 Grandio SO(VOCO) and 24 Filtek Z250(3?M) resin composite blocks were prepared. Half of the samples (N?=?12) were diamond bur-roughened and the other half (N?=?12) were sandblasted by 50?μm aluminum oxide particles. They were further divided into four sub-groups (n?=?3) and received the following: Sub-Group1: Adper Single Bond2 (Etch&Rinse) (3?M); Sub-Group2: Clearfil SE (Self-etch) (Kuraray); Sub-Group3: Beauty Bond (HEMA-free all-in-one) (Shofu); Sub-Group4: All Bond3 (HEMA-free, hydrophobic, etch&rinse) (Bisco). The samples were repaired by Filtek Z250 to form a block. All of the resultant sub-groups combinations consisted of one of the composite type, surface treatment type, and adhesive systems. A total of 18 groups were prepared including 2 homogeneous blocks. They were thermocycled and μTBS measurements were performed. Data were statistically analyzed with Kruskall–Wallis and Mann–Whitney U tests. Results: The experimental regroups’ μTBS reached to 34.67–66.36% and 43.44–95.52% of the cohesive bond strength for Grandio SO and Z250, respectively. The pre-existing composite type is found to be statistically important. When the surface is bur-finished Grandio performed better; when air-abrasion is considered Z250 showed higher bond strength. All-in-one adhesive system produced the weakest bond strength at all parameters. Conclusion: It may be suggested that when the pre-existing composite is unknown, air-abrasion may be performed with etch&rinse or two-step self-etch adhesives.  相似文献   

13.
The aim of this study was to determine the effect of 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based primer on the shear bond strengths of thermally aged self-adhesive and conventional adhesive resin cements and zinc phosphate cement to zirconia and lithium disilicate substructures. Sixty zirconia (Z) and 60 lithium disilicate (L) disk specimens were cut from ceramic blocks. Each group was divided into six subgroups (n = 10). Half of the specimens of each ceramic group were treated with primer (P) and the other half was remained untreated. Three types of cement were applied: zinc phosphate cement [(ZPC) (Hoffmann Harmonic Shades)]; self-adhesive resin cement [(SAC) (RelyX U200)]; conventional adhesive resin cement [(CAC) (C&B)]. The specimens were subjected to thermal aging procedure for 1 week under 37 °C water bath. Shear bond strength (SBS) was determined using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with three-way (ANOVA). Pairwise comparisons and interactions between groups were analyzed by using Tukey’s simultaneous confidence intervals. There was no significant difference between the SBS values of SAC-Z (11,47 ± 0,47) and SAC-ZP (11,39 ± 0,42) (p > 0.05). However, the SBS values of SAC-L (12.34 ± 0,55) and SAC-LP (12,50 ± 0,49) were significantly higher than those of SAC-Z and SAC-ZP (p < 0.00). The use of primer significantly increased the SBS value of CAC-ZP (8,05 ± 0,55) when compared to the SBS value of CAC-Z (3,53 ± 0,41) (p < 0.00). Resin cement that contains methacrylate monomers with phosphoric ester functional groups exhibited reliable bond to zirconia. However, the use of an MDP-based primer may not further improve its bond strength.  相似文献   

14.
Introduction: The aim of the study was to determine the effects of sodium ascorbate and delaying bonding for 4 weeks after bleaching on SBS of orthodontic brackets.

Methods: Sixty freshly extracted, noncarious, premolars were randomly assigned to 4 groups of 15 each. Orthodontic brackets were bonded with a composite resin and cured with a halogen light. After bonding, the shear bond strengths of the brackets were tested with a universal testing machine. Group I served as the control. In groups II, III, and IV, teeth were bleached with an office bleaching method. In group II, brackets bonded immediately after bleaching. In group III, teeth were immersed in artificial saliva of 4 weeks after bleaching before bonding brackets. In group IV, teeth were treated with 10% sodium ascorbate after bleaching before bonding brackets.

Results: One-way analysis of variance indicated a significant difference between groups (P < .001). The highest values for SBS were measured in group I (11.92 ± 0.81 MPa). The SBS was significantly lower in groups II, III, and IV than in group I (P < .001). There was no statistically significant difference between groups III and IV.

Conclusions: Bleaching significantly reduced the SBS of orthodontic brackets on human enamel. If bleaching is mandatory, teeth should be treated with sodium ascorbate before bonding.  相似文献   

15.
Investigate the tensile bond strength, surface morphology, and wettability of reinforced glass-ceramic etched with high power laser at different protocols and luted to human dentin. Fifty carious-free human molars were used in this study and distributed in five groups according to surface etching: (Control [HF10% + Silane]; Er [Er:YAG + Silane]; Sil + Er [Silane + Er:YAG]; Nd [Nd:YAG + Silane]; and Nd + Sil [Silane + Nd:YAG]). After, the tensile bond strength test was performed. Three specimens per group were used to perform the surface morphologies by using scanning electron microscopy analysis and wettability by using the sessile drop technique. Failure modes were determined. Data were analyzed with two-way analysis of variance and Tukey tests, with α = .05. The bond strength data showed statistically significant differences among tested groups for the laser and silanization technique type (p < .001). The highest calculated bond strength values were obtained with Er (19.25 ± 3.70 MPa) followed by Sil + Er (14.11 ± 4.11 MPa), Control (9.42 ± 2.27 MPa), Nd (9.66 ± 2.02 MPa), and Nd + Sil (6.71 ± 1.88 MPa), respectively. The silane application prior to the laser irradiation showed an inferior bond strength compared to the conventional silanization technique. The surface etching using Er:YAG laser showed promissor results for the lithium disilicate.  相似文献   

16.
The aim of the present study was to investigate the effects of three different surface treatments and two different adhesives on the microtensile bond strength (μTBS) of repaired composites using the same or different type of resin. Twenty-four nano-hybrid (Ceram X mono-C) and 24 nanofilled (Filtek Ultimate-F) composite discs were prepared. The specimens were aged with 5000 thermocycles and randomly divided into groups according to the surface treatment methods: (a) phosphoric acid (b) Er:YAG laser and (c) aluminum trioxide particle (air abrasion). Fresh composite resins (C and F) were added to the treated surfaces with two different adhesives (two-step and one-step self-etch adhesives). Then, the specimens were aged again. The stick-shaped specimens were prepared from the discs (n = 25) and the sticks were subjected to the μTBS test. Results indicated that significant differences were found in μTBS values among the surface treatment methods. In the C groups, the highest μTBS value (41.3 ± 8.3 MPa) was recorded in the air abrasion and one-step self-etch adhesive group, which were repaired with the same kind of composite. In the F groups, the highest μTBS value was observed in the air abrasion and one-step self-etch adhesive (37.6 ± 12.3 MPa) group. The treatment with air abrasion is more effective than the others, and it may be suggested for composite repair.  相似文献   

17.
Objective: The aim was to evaluate the effect of 1064 nm Yb-doped fiber-based nanosecond pulsed laser on surface roughness and bond strength between veneer ceramic and zirconia. Material and methods: Zirconia discs were divided into three groups: sandblasted (SB), laser irradiated (YL), and control (n?=?12). YL group was treated with ytterbium laser with the setting of 85 W/25 kHz. Sandblasting was done using 50 μm Al2O3 particles from a distance of 10 mm for 20 s under 3.5 atm. No surface treatment was applied to the control group. The surface roughness values and SEM images of the groups were obtained. X-ray diffraction analysis was applied to a spare sample of each group to determine the monoclinic phase ratio. The samples were subjected to shear bond strength (SBS) test with a cross-head speed of 1 mm/min after being veneered. The fracture modes were evaluated. One-way analysis of variance and Tukey’s HSD tests were used for statistical analysis. Results: The YL group had higher surface roughness than the control (p?≤?0.0001) and the SB group (p?=?0.007) with a mean value of 2.90 μm. The SEM images of the groups supported this result, but formation of the microcracks was more intense for the YL group. The monoclinic phase ratio was highest for the SB group. However, the differences of SBS between SB and YL groups were not statistically significant. Mostly the combined failure of samples was observed. Conclusions: Ytterbium laser treatment increased the surface roughness of zirconia, but the SBS was not higher than sandblasting. Surface roughness results did not correlate with the SBS results.  相似文献   

18.
This study compared the shear bond strength of orthodontic brackets to laboratory-processed indirect resin composites (IRC) after different surface conditioning methods and aging. Specimens made of IRC (Gradia Indirect, GC) (thickness: 2 mm; diameter: 10 mm) (N = 80) were randomly assigned to one of the following surface conditioning methods: C – Control: no treatment; AA – Air-abrasion (50 μm Al2O3 particles); DB – Diamond bur and HF – Etching with hydrofluoric acid (9.6%). After adhesive primer application (Transbond XT), orthodontic brackets were bonded to the conditioned IRC specimens using adhesive resin (Transbond XT). Following storage in artificial saliva for 24 h at 37 °C, the specimens were thermocycled (×1000, 5–55 °C). The IRC–bracket interface was loaded under shear in a Universal Testing Machine (0.5 mm/min). Failure types were classified using modified adhesive remnant index criteria. Data were analyzed using two-way ANOVA and Tukey`s HSD (α = 0.05). Surface conditioning method did not significantly affect the bond strength results (p = 0.2020), but aging significantly decreased the results (p = 0.04). Interaction terms were not significant (p = 0.775). In both non-aged and aged conditions, non-conditioned C group presented the lowest bond strength results (MPa) (p < 0.05). In non-aged conditions, surface conditioning with DB (8.03 ± 0.77) and HF (7.87 ± 0.64) showed significantly higher bond strength results compared to those of other groups (p < 0.05). Thermocycling significantly decreased the mean bond strength in all groups (2.24 ± 0.36–6.21 ± 0.59) (p < 0.05). The incidence of Score 5 (all adhesive resin remaining on the specimen) was the highest in HF group without (80%) and with aging (80%) followed by DB (40, 70%, respectively). C groups without and with aging showed exclusively Score 1 type (no adhesive resin on the specimen) of failures indicating the least reliable type of adhesion.  相似文献   

19.
The purpose of this in vitro study was to evaluate and compare the effectiveness of different surface cleaning methods on the shear bond strength (SBS) of zirconia ceramic surfaces. Seventy polished and cleaned zirconia disk specimens of 8 mm in diameter and 3.4 mm in thickness were immersed in fresh saliva. They were then pressed into a freshly mixed silicone disclosing medium. Six different cleaning methods were applied to the tested groups; they were airborne-particle abraded (AA), covered with a cleaning paste (Ivoclean®) (IV), etched with orthophosphoric acid (PA), immersed in alcohol (AL), rinsed with tap water only (WA), or cleaned with steam (SC). No surface cleaning was done after saliva immersion and silicone disclosing medium contamination to the control group (CC). The specimens were then bonded to an adhesive resin cement using polyethylene tubes. SBS was determined using a universal testing machine at a crosshead speed of 1 mm/min. The specimens were also examined with a scanning electron microscope and a stereomicroscope. Group AA yielded the highest SBS value (7.01 ± 1.4 MPa) among the groups, while Group WA had the lowest SBS value (3.03 ± 0.8 MPa). The SBS values of Group AA (7.01 ± 1.4 MPa) and IV (6.2 ± 1.7 MPa) were also significantly higher than those of the remaining four groups (p < 0.05). Within the limitations of this in vitro study, it was concluded that among the various cleaning methods tested, airborne-particle abrasion and Ivoclean® paste were effective in cleaning the zirconia surface.  相似文献   

20.
This study compared the effect of different adhesive systems and composite resins on the shear bond strength (SBS) of repaired high-viscosity bulk-fill composites(Tetric EvoCeram Bulk Fill) and investigated failure modes. One hundred twenty cylindrical bulk-fill composite blocks (diameter 5?mm) were fabricated and thermocycled for 5000 cycles (5–55?°C). Specimens were roughened by diamond bur and divided into 8 groups (n?=?15). Bulk-fill blocks were repaired with the same material or nanohybrid composite resin(Tetric EvoCeram Nanohybrid) (diameter 3?mm) using different adhesive systems:Tetric N-Bond Universal (TSE);37% phosphoric acid etching?+?Tetric N-Bond Universal (TER); Clearfil SE Bond (CSE); 37% phosphoric acid etching?+?AdperTMSingle Bond 2(SB). After repair procedures, all specimens were thermocycled again. The shear bond strengths were measured for all specimens using a universal test machine (crosshead speed of 1?mm/min). Cohesive strengths of bulk-fill composites were measured and described as control group. Debonded surfaces were observed with a stereomicroscope under 10x magnification to determine mode of failure. The SBS data of all groups was statistically analyzed by two-way ANOVA and Bonferroni correction test (p?<?0.05). The specimens repaired with bulk-fill composites showed significantly higher SBS values (25.86?±?5.74, 27.05?±?4.93, 24.49?±?6.95MPa) than those with nanohybrid composites (20.41?±?3.70, 22.08?±?6.37, 18.74?±?6.40?MPa) for TER,CSE,SB, respectively (p?<?0.05). There were no significant differences in SBS according to the type of adhesive systems for both repair materials (p?>?0.05). The predominant mode of failure was a mixed type in the restorative material except for the ones repaired with nanohybrid composites using AdperTMSingle Bond 2. High-viscosity bulk-fill composites could be successfully repaired with the same materials. SBS of repaired bulk-fill composites reached cohesive strength for all tested groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号