首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated the effect of airborne-particle abrasion with niobium phosphate bioglass (NbG) microparticles on the bond strength (μTBS) and longevity of an adhesive system to different dentin substrates. In this study, 18 Caries-free molars were used, of which 12 were microbiologically processed for caries induction. The dentin surfaces were evaluated in three groups: (1) Control – Healthy Dentin; (2) Partial removal of carious tissue; (3) complete removal of carious tissue. Half the teeth in each group were submitted to airborne-particle abrasion with NbG microparticles (15 s/1 cm/5 bar). After this, the adhesive Clearfil S3 was applied and composite buildups were constructed incrementally; and specimens were longitudinally sectioned to obtain bonded sticks (1.0 mm2) to be tested in tension (0.5 mm/min) immediately or after 6 months of storage in water. The fracture patterns were evaluated by stereomicroscope (40×) and then by scanning electron microscopy. The data were analyzed by the Kruskal-Wallis (post hoc Dunn) and Mann-Whitney tests (α = 0.05). Healthy dentin showed the highest bond strength (μTBS). Airborne-particle abrasion with NbG increased the μTBS values in the Group with complete caries removal. The bond strength values in the 24-h period were higher than those at 6 months. In the majority of the specimens the fracture mode was adhesive/mixed. The authors concluded that airborne-particle abrasion on dentin with NbG particles increased the μTBS in the group in which carious dentin was completely removed.  相似文献   

2.
Objective: To evaluate the effect of cavity disinfectants on the immediate microtensile bond strength (μTBS) of an etch-and-rinse adhesive to water- and ethanol-saturated sound and caries-affected dentin (CAD). Material and Methods: Thirty-six human molars were sectioned to expose 1/3 of the mid-coronal dentin surface. Sound (n = 18) and CAD (n = 18) specimens were divided into six groups each (n = 3): one positive control (sound), one negative control (CAD), and five experimental groups each. In the control group, dentin surfaces were bonded using an etch-and-rinse adhesive with a traditional water-wet bonding technique. In the experimental groups, ozone was applied before etching and chlorhexidine after etching. In the ethanol-wet bonding groups, acid-etched dentin surfaces were treated with ethanol. Following adhesive application and composite buildups, bonded specimens were sectioned to form sticks. Failure modes were analyzed using a stereomicroscope. Results: The water-wet bonded sound control group yielded the highest μTBS among all groups (p < 0.001). The lowest μTBS values were observed in the ozone groups (p < 0.05). The ethanol-wet bonded CAD group exhibited a higher μTBS than the water-wet bonded negative controls. Although compared to the positive control, chlorhexidine decreased the μTBS (p < 0.05), an increase with no significant difference was observed in the negative control (p > 0.05). Conclusions: The μTBS values of CAD were lower than those of sound dentin. Ethanol-wet bonding improved the μTBS of CAD. Ozone application reduced the μTBS in both sound and CAD; chlorhexidine improved the immediate μTBS after etching in CAD.  相似文献   

3.
This study evaluated the effect of 2% chlorhexidine gluconate-based cavity disinfectant (CHX) on the microtensile bond strength (μTBS) of glass ionomer, resin-modified glass ionomer and packable resin composite to sound and caries-affected dentin. Sound and occlusal caries-affected human third molars (N?=?36, n?=?3 per group) were randomly divided into three experimental groups to receive one of the following restorative materials. (a) Glass ionomer (Ketac Molar, 3 M ESPE; GI), (b) resin-modified glass ionomer (Vitremer, 3 M ESPE; RMGI) and (c) packable resin composite (Surefil, Dentsply; PRC) with a bonding agent (Prime Bond NT, Dentsply De Trey). Caries was removed using a caries-detecting dye (Caries Detector, Kuraray Medical Ltd.) and flat dentin surfaces were achieved by finishing up to 1200-grit silicon carbide abrasive. Half of the teeth in each group received 2% CHX (Consepsis, Ultradent). Dentin surfaces were built-up with the respective materials incrementally and were sectioned with a slow-speed saw into multiple beams. The beams were subjected to μTBS test (0.5 mm/min) in a Universal Testing Machine. The data were analysed using two-way analysis of variance and Tukey’s tests. For each restorative material, μTBS results were not affected by the application of CHX (p?>?0.05) on both sound and caries-affected dentin (p?>?0.05). PRC in combination with the corresponding bonding agent showed significantly higher results (p?<?0.05) than those of GI and RMGI, on sound and caries-affected teeth, respectively. Cohesive failure in dentin was not observed in any of the groups. The use of 2% chlorhexidine-based cavity disinfectant did not impair the adhesion of the restorative materials tested to either sound or caries-affected dentin.  相似文献   

4.
Abstract

The purpose of this in vitro study was to evaluate the influence of different surface treatments and aging on the microtensile bond strength (μTBS) of bulk-fill composite resins. Bulk-fill composites (Filtek One; 3M ESPE) randomly received five different surface treatments: (1) no treatment, control, (2) 37% phosphoric acid etching (PA), (3) 9% hydrofluoric acid etching (HF), (4) air-borne particle abrasion with 50-μm alumina particles (Al2O3), (5) tribochemical silica coating (CoJet). Following, the specimens were divided into three subgroups according to universal adhesive applied: Clearfil Universal Bond (CU; Kuraray), Prime&Bond Universal (PBU; Dentsply Sirona), or Single Bond Universal (SBU; 3M ESPE). A nanofill composite (Filtek Ultimate; 3M ESPE) was employed as a repair. Bonded specimens were stored in water for 24?h at 37?°C or thermal aged, then subjected to the μTBS test. Additionally, specimens were analyzed with a contact profilometer and were evaluated with scanning electron microscopy. Control and PA treatments were showed the lowest µTBS (p?<?0.05), and there was no significant difference between these two groups (p?>?0.05). Al2O3 and CoJet treatments generally exhibited a similar influence on µTBS values. In addition, a correlation was found between surface roughness and bond strength (r?=?0.831). CoJet resulted in significantly higher repair µTBS values when compared to the other surface treatments. In addition, the use of silane-containing universal adhesive was increased the cohesive failure rate and maintained the repair µTBS values after thermocycling.  相似文献   

5.
The aim of this study was to evaluate the bond strength of a universal adhesive system to dentin prepared with SiC paper or an Er,Cr:YSGG laser using different bonding strategies (etch-and-rinse versus self-etch mode). Ninety-six extracted caries-free, sound human molars were used. The teeth were longitudinally sectioned in the mesiodistal direction and were wet polished with 600-grit SiC paper to obtain a standardized flat dentin surface. All prepared teeth were randomly divided into two groups, according to the surface preparation method: GroupI:an erbium, chromium:yttrium,scandium, gallium, garnet laser; Group II: silicon carbide paper[SiC] (n = 48). Each group was then assigned into three subgroups according to the universal adhesive’s (Single Bond Universal) bonding strategies: (a) etch-and-rinse mode with phosphoric acid, (b) etch-and-rinse mode with a laser, (c) self-etch mode (n = 16). For surface preparation, the Er,Cr:YSGG laser was used at 3 W, 30 Hz with 140 μs pulse duration for 25 s. For etching mode, the laser was used at 1.5 W (60% air, 70% water). Cylinders of composite were fabricated on the bonding area and shear bond strength was determined using a universal testing machine. Failure modes were evaluated using a stereomicroscope. The data were analyzed using two-way ANOVA followed by the Bonferroni test (p < 0.05). Bonding strategies showed statistically significant differences in both the SiC-and laser-prepared groups (p < 0.05).Universal adhesive used in etch-and-rinse mode with acid showed significantly higher bond strength values than in self-etch mode (p < 0.05). The bond strength values did not differ according to the surface preparation method (p > 0.05). Irrespective of preparation method, using universal adhesive in etch-and-rinse mode with acid might improve dentin bond strength. Laser preparation did not affect the bond strength of the universal adhesive tested.  相似文献   

6.
Purpose: To evaluate the wetting ability and the microtensile bond strength of adhesive systems in various depths of dentin. Materials and Method: 48 extracted human molars cut in half in buccolingual direction. Buccal and lingual surfaces were used to obtain deep (n = 48) and superficial (n = 48) dentin. Groups were divided into 4 subgroups: Self-etch (CSE), etch&rinse (SB), multi-mode self-etch (SAU) and multimode etch&rinse (EAU) adhesive systems. 3 consecutive contact-angle measurements were obtained: T0- 3 μl drop of distilled water on dentin; T1-Droplet of the adhesive; T2- Distilled water after polymerization of the adhesive. After composite build-ups, microtensile measurements were performed. Contact angle data were analysed with analysis of variance for repeated measures. Bond strength data were analyzed by repeated measures analysis of variance, comparisons were made according to the logarithmic values (p < 0.05). Results: The difference between groups was not significant regardless of dentin depth for all measurements (p < 0.05). All groups except CSE enhanced the wetting ability of the adhesive but reduced the wetting ability of distilled water after application of the adhesive (p < 0.05). Regarding adhesive systems, the groups showed no significant difference between bond strengths to various depths of dentin except SAU (p > 0.05); in SAU, bond strength to deep dentine were significantly higher than superficial dentin (p < 0.05). Regarding adhesives’ bond strength, CSE showed significantly greater values than the other groups (p < 0.05). Conclusion: The cavity depth does not affect the bonding ability for all adhesive systems; self-etch adhesive systems might be a better choice since different adhesives may influence the wetting ability and microtensile bond strength of the dentin substrates.  相似文献   

7.
Objectives: Evaluate the influence of composite resins viscosity and type of cure of the adhesive systems on the bond strength of composite resins submitted to artificial aging.

Methods: Dentin specimens (n = 240) were divided into 2 groups: Group GC: GrandioSO, and Group GF: GrandioSO Heavy Flow. These groups were subdivided into 6: FM: Futurabond M – light cured, FDCC: Futurabond Dual Cure – chemical cured, FDCL: Futurabond Dual Cure – light cured, CS3: Clearfil S3 – light cured, CDCC: Clearfil Dual Cure – chemical cured, and CDCL: Clearfil Dual Cure – light cured. Resin blocks were build up on the dentin surface. Half of samples on each group were cut to obtain resin/dentin sticks (1 × 1 mm). The other half was first submitted to thermomechanical aging. The dentin/resin sticks were submitted to microtensile bond strength test and the results were analyzed using three-way ANOVA and Tukey’s test (α = 5%).

Results: ANOVA showed significant influence for adhesive (p = 0.0000) and aging (p = 0.0001). No significant influence of the composite viscosity on bond strength was observed (ANOVA: p = 0.0861). For adhesive, the results of Tukey’s test (MPa) were CDCC: 13.44 (±5.13)a; FM: 14,01 (±2.71)a; CDCL: 14.51 (±4.98)a; FDCC: 18.66 (±7.13)b; CS3: 18.80 (±6.50)b; FDCL: 19.18 (±7.39)b. For aging: AGED: 14.99 (±6.32)a; NOT AGED: 17.87 (±5.97)b.

Conclusion: Composite resin viscosities did not influence on the bond strength. Type of cure of the adhesives had influence on the bond strength. Thermomechanical aging decreased the bond strength.  相似文献   


8.
The durability of adhesive interfaces is still a problem in adhesive restorations in dentistry. Laboratorial ageing methods have been proposed to predict the performance of materials, but they still require standardization. The objective of this study was to evaluate the resin-dentin microtensile bond strength of composite restorations subjected to pH cycling and different levels of mechanical loading. Resin blocks were built over a flat superficial dentin of bovine incisors (n = 40), using a three-step adhesive system. Half of the specimens were submitted to 10 cycles of pH cycling, followed by mechanical loading (0, 500,000; 1,000,000; 2,000,000 cycles – 98 N, 4 Hz). The other half was directly subjected to mechanical loading. After ageing, all groups were subjected to a microtensile bond test. Data were analyzed using two-way ANOVA and Tukey’s test (α = 0.05). The frequency of the early de-bonding was compared using the Chi-square test (α = 0.05). The statistical analysis revealed that the cross-product interaction ‘pH cycling’ vs. ‘number of mechanical loading cycles’ (p = 0.72) as well as the main factor ‘pH cycling’ (p = 0.49) was not statistically significant, and they were not able to reduce the resin–dentin bond strength values. Regarding the number of mechanical loading cycles, the groups subjected to 2,000,000 cycles showed lower bond strength values than the others (p = 0.003). The frequency of debonded specimens increased with mechanical loading. Therefore, it can be concluded that in this restorative model, at least 2,000,000 mechanical cycles are need to decrease the microtensile strength and simulate the ageing of the interface.  相似文献   

9.
One-bottle universal adhesives have been widely used because of their simplicity of bonding procedures for various dental materials. The present study evaluated the effect of the polymerization light source on the micro-tensile bond strengths of a universal adhesive (Clearfil Universal Bond Quick) to dentin in comparison with a one-bottle self-etch adhesive (Clearfil S3 Bond Plus) and two 2-step self-etch adhesives (Clearfil SE Bond and Clearfil SE Bond 2). The adhesives were applied to extracted human dentin according to the manufacturer’s instructions and irradiated using either a quartz-tungsten-halogen (QTH) or blue light-emitting diode (LED). Subsequently, a resin composite was incrementally built on each adhesive and light-cured using the QTH. The bonded specimens were sectioned and subjected to micro-tensile bond strength tests. Both the type of adhesive and the light source were found to statistically affect the bond strength, with no interactions. The LED gave greater bond strength than the QTH. The bond strengths of the two-step adhesives were significantly higher than those of the one-bottle products, irrespective of the light source. The Clearfil Universal Bond Quick exhibited significantly higher bond strength than the Clearfil S3 Bond Plus. LED curing improved the performance of Clearfil Universal Bond Quick, and this product generated bond strength superior to that of the existing one-bottle adhesive Clearfil S3 Bond Plus.  相似文献   

10.
Objectives: To investigate the effect of different self-etch adhesive systems application techniques: active or passive in a single or double layer on adhesive–dentin microshear bond strength.

Methods: Occlusal surfaces of 48 extracted human molars were ground to expose flat superficial dentin surfaces. Specimens were randomly divided into two main groups according to the tested self-etch adhesive system either: One-step self-etch (AdperTM easy-one) or two-step self-etch (AdperTM SE Plus). Each adhesive system was applied on the prepared dentin surfaces followed one of these techniques: (1) Passive application of a single layer, (2) Active application of single layer, (3) Passive application of double adhesive layer (with light curing in between), and (4) Active application of double adhesive layers. Resin composite was packed inside micro-tubes fixed on the bonded dentin surfaces and light cured for 40 s. All specimens were stored in artificial saliva either for 24 h or 3 months before testing. Microshear bond strength test was employed using a universal testing machine at a crosshead speed of 0.5 mm/min.

Results: AdperTM SE Plus showed higher significant microshear bond strength in compared with AdperTM easy-one. For both adhesive systems active application showed higher significant microshear bond strength to dentin than passive application. Double application of adhesive systems showed lower microshear bond strength than single application.

Conclusion: Active application of self-etch adhesives could improve the dentin microshear bond strength. Double application with curing in between the layers did not improve the bond strength to the tested adhesive.  相似文献   


11.
Objective: The purpose of this in vitro study was to evaluate the effect of thermal cycling on the micro-tensile bond strength (Mtbs) of multimode adhesive agents. Materials and methods: Eight freshly extracted caries-free human third molars were used. The flat dentin surfaces were prepared and polished with 600-grit SiC abrasive paper for standard smear layer formation. The teeth were restored using Single Bond Universal Adhesive [(total etch (G1, G2)/self etch (G3, G4)]?+?Filtek Z550 and All-Bond Universal Adhesive [(total etch (G5, G6)/self etch (G7, G8)]?+?Aelite all-purpose. The specimens in groups G1, G3, G5, and G7 were subjected to thermal cycling (1000 cycles at 5–55 °C, for a 30?s dwell time), while the specimens in other groups were not exposed to an aging procedure. The Mtbs test was determined in all procedures. Data were submitted to three-way ANOVA and post hoc tests. The significance level was set at?=?0.05. Results: Group five was highly affected by the thermal cycling following the total etch procedure, while group one was not significantly affected. Group seven was highly affected by thermal cycling, while group three was not significantly affected after the self etch procedure. Group eight exhibited a higher mean Mtbs value after the thermal cycling procedure. Conclusion: The bond strength of multimode (universal) adhesives was found to be material dependent. The total etch procedure showed a higher Mtbs value than the self etch procedure.  相似文献   

12.
Purpose: The aim of this study was to evaluate the influence of previous application of an adhesive system on bond strength of resinous liner materials to dentin. Methods: Ninety bovine incisors crowns had a 6 × 6 mm area of dentin exposed, with minimum of 2 mm thickness. They were embedded in acrylic resin, and the dentin was polished with P600 SiC sandpaper for 30 s to standardize the smear layer. The specimens were divided into 6 groups (n = 15) according to the application or not of a self-etching system (Futurabond U – Voco) and the type of resinous liner used: A+Ionoseal (adhesive and Ionoseal – Voco); Ionoseal (Ionoseal only); A+Vitrebond (adhesive and Vitrebond – 3M/ESPE); Vitrebond (Vitrebond only); A+Ionosit (adhesive and Ionosit – DMG) and Ionosit (Ionosit only). Adhesives were used following manufacturer’s instructions, and the liner materials were applied inside a 2-mm-depth matrix and light-cured for 20 s. The bond strength was measured by microtensile test, using a universal testing machine with a cross-speed of 1 mm/min. Data were analyzed using one-way ANOVA and Tukey’s test (p < 0.05). Results: The adhesive system application increased bond strength of all liners tested. Ionoseal presented the highest bond strength when the adhesive system was used and exhibited similar performance to Vitrebond without adhesive. Ionosit without adhesive showed the smallest bond strength compared with the other liners tested. Conclusion: The application of an adhesive system prior to the use of the resinous liners improved the bond strength to dentin and should be preconized.  相似文献   

13.
新型高强度单组分环氧树脂胶粘剂的研制   总被引:4,自引:1,他引:4  
采用新工艺制备了一种新型高强度单组分环氧树脂胶粘剂。实验结果表明,新型环氧树脂体系具有良好的力学性能、疏水性及耐热性。  相似文献   

14.
The purpose of this study was to determine the surface energy parameters of dental self-adhesive resin cements (SRCs) and to measure their bond strength to dentin. Six dental SRCs (RelyX Unicem Clicker, RU; Maxcem Elite, ME; BisCem, BC; Clearfil SA Luting, SA; Multilink Speed, MS; seT PP, SP) and one resin-modified glass ionomer cement (RelyX Luting 2, RL; control) were tested. Smear layer-covered bovine dentin was used as bonding substrate. Using the dynamic sessile drop method, surface energy, surface energy components, degree of hydrophobicity/hydrophilicity (expressed as ΔG sws using thermodynamic notation), and apparent surface energies for each material were calculated. The luting cements were bonded to the dentin and stored in water at 37?°C for 24?h prior to shear bond strength test (n?=?10). Pearson correlation analysis was applied to detect possible correlations between surface energy parameters and measured shear bond strength (α?=?0.05). RU, SA, and MS produced negative ΔG sws values (hydrophobic), whereas ME, BC, SP, and RL yielded positive ones (hydrophilic). RU had the highest value among all six SRCs tested, the value for MS being statistically equivalent (p?=?0.785). The base component, ΔG sws, and surface energy determined with water showed significant negative linear correlations with dentin bond strength (r/p?=??0.801/0.030, ?0.900/0.006, and ?0.892/0.007, respectively). These results suggest that bonding to smear layer-covered bovine dentin was governed by the base component and the hydrophobicity/hydrophilicity of the SRCs.  相似文献   

15.
The aim of the present study is to investigate the effect of aging type (thermocycling vs. water storage) and aged unit (block vs. stick) on the repair strength of resin composite to feldspathic porcelain in testing microtensile bond strength (μTBS). Ceramic specimens (N = 30) (10 × 5.7 × 4.5 mm3, Vita Mark II, Vita) were obtained from CAD–CAM blocks. One surface was etched with 10% HF and silanized. An adhesive was applied and resin composite blocks were constructed incrementally on the conditioned surface. The specimens were randomly divided into five groups (n = 6): Control (C): Non-aged; BTC: Blocks were thermocycled (5–55 °C, 6000 cycles); STC: Sticks were thermocycled; BS: Blocks aged in water storage (6 months) after themocycling; SS: Blocks aged in water storage (6 months) after thermocycling. After μTBS test, failure types were classified. Data (MPa) were statistically analyzed (1-way and Dunett and 2-way ANOVA, Tukey`s) (α = 0.05). Two-parameter Weibull distribution values including the Weibull modulus, scale (m), and shape (0) values were calculated. Aging type (p = 0.009) and aged unit (p = 0.000) significantly affected the results. Interaction terms were also significant (p = 0.000). Considering the stick level, there was no significant difference between thermocycling (STC: 25.7 ± 2.3) and water storage (SS: 25.3 ± 3.8) (p > 0.05) but the results were significantly higher when blocks were thermocycled (BTC: 31.6 ± 2.9) (p < 0.05). Weibull modulus and characteristic strength was the highest in BTC (m = 4.2; σo: 34.4) among all other groups (m = 3–3.9; σo: 14.6–28.5). Adhesive failures were common and cohesive failures occurred in less than 5% in all groups. Aging protocol was detrimental on durability of repair strength of resin composite to feldspathic porcelain. Exposing the sticks to either thermocycling or water storage aging should be considered in in vitro studies.  相似文献   

16.
The mechanical and statistical behaviour of aerospace structural adhesives has been investigated by performing tensile tests on moulded samples and applying Weibull theory to results. Effects of loading rate, sample size and process parameters have been studied. The experimental design method has been employed in an attempt to extend the experimental results to other combinations of parameters. Three kinds of structural adhesive have been characterised, viz, Hysol® EA9321, Hysol® EA9394 and Hysol® EA9395, which are particle reinforced epoxy adhesives, all of them containing voids with statistically distributed sizes (partially dependent on bonding technique). These highly heterogeneous, but natural, microstructures explain the dispersion of measured strength and Young’s modulus of the materials. These two quantities are demonstrated not to be correlated. With these results, simple fibre bundle theory is used to evaluate the mean value and variance of the failure stress of a bonded joint loaded in tension.  相似文献   

17.
The aim of the present in vitro study was to evaluate the effect of chlorhexidine, applied before a self-etching adhesive system (Clearfil SE Bond) on microtensile bond strength to superficial and deep dentin (DD), immediately and after six months of water storage (WS). Forty dentin specimens were divided into two groups according to dentin depth: superficial and deep. The specimens were then divided according to the solution to be applied (n = 10): CLX: 2% chlorhexidine (passively applied for 60 s) and NT (no treatment). A self-etching adhesive system was applied according to the manufactures instructions, with composite restorative placed on the dentin surface. After 24 h, dentin–resin blocks were sectioned into beam-shaped specimens that were submitted to microtensile bond strength testing either immediately or after six months of WS. Data were submitted to three-way ANOVA (α = 0.05). Bond strength values for the deep dentin group were significantly lower than those observed for superficial dentin (SD) (p = 0.002), whether chlorhexidine solution had been applied or not. There was no statistical difference in bond strength for specimens tested after 24 h and 6 months of WS. The application of chlorhexidine did not affect immediate and long-term bond strength to dentin. Bond strength in deep dentin was lower than in SD.  相似文献   

18.
为了研究被粘接材料的线膨胀系数对胶接件拉伸剪切性能的影响,用改性环氧树脂(EP)胶粘剂粘接不同材料,并对该胶接件进行拉伸剪切强度试验和温度影响试验。研究结果表明,被粘接材料的线膨胀系数不同会导致胶层在热冷变化过程中受到内应力作用而破坏,同时热空气进入胶层会导致胶层氧化变色,致使胶粘剂界面结合强度和胶粘剂自身强度降低;两种被粘接材料的线膨胀系数差异越大,经热冷变化后胶接件的拉伸剪切性能越低;在相同条件下,热冷变化温差越大,胶接件的拉伸剪切性能越低。  相似文献   

19.
Objectives: This study evaluated the effect of argon atmosphere compared with vacuum during porcelain firing on the fracture strength of crowns made of porcelain and electron beam melted (EBM) Ti-6Al-4 V, cast commercially pure titanium or milled commercially pure titanium. Methods: Sixty crown copings of c. p. titanium, Ti-6Al-4 V alloy and porcelain were fabricated using three production techniques. The copings were fired either under vacuum or in an argon gas atmosphere. Specimens were subdivided into groups of cast c. p. titanium, milled c. p. titanium and EBM Ti-6Al-4 V which were further subdivided according to firing modes employing either vacuum or argon gas. The 60 specimens were subjected to cyclic preloading and thermocycling, and were then individually loaded until interface fractured. Differences between the group mean values were calculated using the one-way ANOVA and Tukey’s range test. Two fractured samples from each group were cut with a diamond blade and examined using SEM and EDS for visualization and chemical composition analysis of the fractured interface. Results: The highest mean fracture strength values, though not significant, were recorded for the groups fired in argon atmosphere, and the lowest mean fracture strength values were recorded for the groups fired in vacuum, with one exception. Comparing the two main groups of firing atmosphere, no significant difference could be documented. SEM and EDS analysis indicated clear differences in composition and structure between the groups included in the study. Conclusions: Firing in argon atmosphere does not significantly improve the fracture strength of porcelain bonded to titanium.  相似文献   

20.
An experimental investigation on the bond strength of the interface between mortar and aggregate is reported. Composite compact specimens were used for applying Mode I and Mode II loading effects. The influence of the type of mortar and type of aggregate and its roughness on the bond strength of the interface has been studied. It has been observed that the bond strength of the interface in tension is significantly low, though the mortars exhibited higher strength. The highest tensile bond strength values have been observed with rough concrete surface with M-13 mortar. The bond strength of the interface in Mode I load depends on the type of aggregate surface and its roughness, and the type of mortar. The bond strength of the interface between mortar M-13 cast against rough concrete in direct tension seems to be about one third of the strength of the mortar. However, it is about 1/20th to 1/10th with the mortar M-12 in sandwiched composite specimens. The bond strength of the interface in shear (Mode II) significantly increases as the roughness and the phase angle of the aggregate surface increase. The strength of mortar on the interface bond strength has been very significant. The sandwiched composite specimens show relatively low bond strength in Mode I loading. The behavior of the interface in both Mode I and Mode II loading effects has been brittle, indicating catastrophic failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号