首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiwalled carbon nanotubes (MWCNTs), both oxidized and amine functionalized (triethylenetetramine—TETA), have been used to improve the mechanical properties of nanocomposites based on epoxy resin. The TGA and XPS analysis allowed the evaluation of the degree of chemical modification on MWCNTs. Nanocomposites were manufactured by a three‐roll milling process with 0.1, 0.5, and 1.0 wt % of MWCNT–COOH and MWCNT–COTETA. A series of nanocomposites with 5.0 wt % of reactive diluent was also prepared. Tensile and impact tests were conducted to evaluate the effects of the nanofillers and diluent on the mechanical properties of the nanocomposites. The results showed higher gains (258% increase) in the impact strength for nanocomposites manufactured with aminated MWCNTs. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate the overall filler distribution, the dispersion of individual nanotubes, and the interface adhesion on the nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42587.  相似文献   

2.
A series of nanocomposites based on a new semi-crystalline polyimide (PI) and multi-walled carbon nanotubes (MWCNTs) were prepared by in situ polymerization. The TEM measurement reveals the improved dispersion of carboxylic acid-functionalized MWCNTs (COOH-MWCNTs) in semi-crystalline PI compared with pristine MWCNTs. The TGA analysis show that the concentration of carboxylic acid groups on the surface of nanotubes is about 4.34 wt%. The FT-IR spectroscopy analysis indicate that the imide rings of the PI interact non-covalently with nanotubes. The Polarized optical microscopy observation reveals significant morphology evolution in semi-crystalline PI induced by MWCNTs. The SEM micrographs suggest the strong interfacial interaction between COOH-MWCNTs and PI main chains, and significant changes in the fracture surfaces morphology. The WAXRD measurements reveal that COOH-MWCNTs promote the semi-crystalline PI crystallinity and structure change. COOH-MWCNTs can more efficiently improve the mechanical and thermal properties of resulting nanocomposites than pristine MWCNTs. COOH-MWCNT/PI nanocomposites show increases of Young’s modulus and yield strength, as high as 20–30 %, without sacrificing the elongation at break at loadings of 0.5 wt% nanotubes. Furthermore, with increasing the loadings of COOH-MWCNTs to 1.0 wt%, Young’s modulus and yield strength decrease due to nanotube aggregation, but elongation at break increase about 46 %. An abrupt increase of elongation at break in pristine MWCNT/PI nanocomposites was also registered at nanotubes loadings increasing from 0.5 to 1 wt%. These results indicate that the properties of semi-crystalline PI nanocomposites reinforced with carbon nanotubes are not only determined by the dispersion of nanotubes in the PI matrix and their interfacial interactions, but also by the crystalline phase morphology evolution in the PI matrix.  相似文献   

3.
The mechanical properties, water absorption, biodegradation, multiwalled carbon nanotubes (MWCNTs) recovery and reusability of chitosan/oxidized MWCNTs nanocomposites were investigated. The highest Young's modulus (E) was obtained by the nanocomposites with 0.1 wt.% MWCNTs, while further increase of MWCNTs loading decreases the tensile strength (TS) and E. The water absorption and degradation rate of the nanocomposites were decreased by the loading of MWCNTs; 89.7% of MWCNTs were recovered by physical base separation. Thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and tensile test results showed that the recovered MWCNTs displayed properties similar to the oxidized MWCNTs, suggesting the possibility of reuse and recycle.  相似文献   

4.
A spray drying approach has been used to prepare polyurethane/multiwalled carbon nanotube (PU/MWCNT) composites. By using this method, the MWCNTs can be dispersed homogeneously in the PU matrix in an attempt to improve the mechanical properties of the nanocomposites. The morphology of the resulting PU/MWCNT composites was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observations illustrate that the MWCNTs are dispersed finely and uniformly in the PU matrix. X‐ray diffraction results indicate that the microphase separation structure of the PU is slightly affected by the presence of the MWCNTs. The mechanical properties such as tensile strength, tensile modulus, elongation at break, and hardness of the nanocomposites were studied. The electrical and the thermal conductivity of the nanocomposites were also evaluated. The results show that both the electrical and the thermal conductivity increase with the increase of MWCNT loading. In addition, the percolation threshold value of the PU composites is significantly reduced to about 5 wt % because of the high aspect ratio of carbon nanotubes and exclusive effect of latex particles of PU emulsion in dispersion. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Despite the development of strong, durable, and cost efficient polyisobutylene‐based polyurethane (PIB‐based PU) materials has yet to be achieved. The well dispersion and maximum interfacial interaction between the nanofiller and the PIB‐based PU at low loading have been scarcely studied. Here, the preparation of PIB‐based PU nanocomposites with Multiwalled carbon nanotubes (MWCNTs) using a simple in situ polymerization method is reported. The thermogravimetric analysis tests show that MWCNTs significantly improved the thermal stability of MWCNTs/PIB‐based PU nanocomposites. Compare to the pure PIB‐based PU the onset temperature of degradation for the nanocomposite was about 20°C higher at 0.7 wt% MWCNTs loading. Efficient load transfer is found between the nanofiller MWCNTs and PIB‐based PU and the mechanical properties of the MWCNTs/PIB‐based PU nanocomposite with well dispersion are improved. A 63% improvement of Young's modulus and slightly increased of tensile strength are achieved by addition of only 0.7 wt% of MWCNTs. The experimentally determined Young's modulus is in well agreement with the theoretical simulation. It is worth noting that the PIB‐based PU and MWCNTs/PIB‐based PU nanocomposites exhibit excellent damping properties (tan δ > 0.3) from −45°C to 8°C. POLYM. COMPOS., 36:198–203, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
用熔体插层法制备甲基乙烯基硅橡胶(MVQ)/有机改性蒙脱土(OMMT)纳米复合材料并研究其微观结构和性能。结果表明:OMMT改性剂疏水性从优到劣的顺序为I.44P,I.30P,Bengel434,I.44P和I.30P在MVQ中的分散性优于Bengel434;MVQ/OMMT纳米复合材料的物理性能和热稳定性从优到劣的顺序为MVQ/I.44P,MVQ/I.30P,MVQ/Bengel434纳米复合材料;添加40份I.44P的MVQ/I.44P纳米复合材料的100%定伸应力、拉伸强度和撕裂强度比纯胶有较大提高。  相似文献   

7.
Poly (dimethyl siloxane) (PDMS) is a model silicon elastomer used as marine fouling-release coating, because it meets the fouling-release zone conditions of the Baier curve. However, weak mechanical properties limit its use. In this aspect, incorporation of carbon nanoparticles into PDMS is a common method for improving its mechanical properties. Since effective dispersion of nanofillers into polymer matrices is a challenge, a major aim of this study was to examine the PDMS mechanical reinforcement by developing different dispersing methods of pristine MWCNTs into PDMS matrix. SEM images of nanocomposites prepared using dispersion methods 1 and 2 revealed the formation of aggregates which subsequently affected the overall mechanical performance of the samples. Also, the effect of p-MWCNTs content and nanoparticle type [carboxyl-functionalized-MWCNTs, graphene oxide (GO)] on the mechanical properties of the nanocomposites was evaluated. Incorporation of p-MWCNTs did not alter drastically the critical surface energy value of neat PDMS, which subsequently influenced antifouling and cleaning performance of nanoreinforced coatings. To evaluate antifouling and cleaning performance of the nanocomposite coatings, seawater immersion tests were conducted. In conclusion, MWCNTs and GO increased the mechanical strength of the matrix, whereas they contributed to a small extent to the improvement in antifouling and cleaning performance of the composites.  相似文献   

8.
In the present work, chitosan (CS)‐grafted multiwalled carbon nanotube (MWCNT) nanocomposites were prepared via covalently bonded CS onto MWCNTs that had weight fractions of MWCNTs ranging from 0.1 to 3.0 wt % by a simple method of solution casting. The structure, morphology, and mechanical properties of the films were investigated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, optical microscopy, wide‐angle X‐ray diffraction, contact angle, and tensile testing. The results indicated that the CS chains were attached onto the MWCNTs successfully via covalent linkages. More interestingly, the MWCNTs provided a matrix that facilitated the crystallization of CS. Compared with the pure CS, the tensile strength and Young's modulus of the nanocomposites were enhanced significantly from 39.6 to 105.6 MPa and from 2.01 to 4.22 GPa with an increase in the MWCNT loading level from 0 to 3.0 wt %, respectively. The improvement in the tensile strength and modulus were ascribed to the uniform dispersion of MWCNTs covalently linked to the CS matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
An electric field-assisted in situ dispersion of multiwall carbon nanotubes (MWCNTs) in polymer nanocomposites, fabricated through stereolithography three-dimensional (3D) printing technique, was demonstrated. The introduction of MWCNTs increased the elasticity modulus of the polymer resin by 77%. Furthermore, the use of an electric field for in situ MWCNT dispersion helped improving the average elongation at break of the samples with MWCNTs by 32%. The electric field also increased the ultimate tensile strength of the MWCNT reinforced nanocomposites by 42%. An increase of over 20% in the ultimate tensile strength of in situ dispersed MWCNT nanocomposites over the pure polymer material was observed. Finally, it was demonstrated that the magnitude and direction of the electrical conductivity of MWCNT nanocomposites can be engineered through the application of in situ electric fields during 3D printing. An increase of 50% in the electrical conductivity was observed when MWCNTs were introduced, while the application of the electric field further improved the electrical conductivity by 26%. The presented results demonstrated the feasibility of tuning both electrical and mechanical properties of MWCNT reinforced polymer nanocomposites using in situ electrical field-assisted 3D printing. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47600.  相似文献   

10.
Poly(methyl methacrylate) (PMMA) multi-walled carbon nanotubes (MWCNTs) nanocomposites were synthesized by several methods using both pristine and surface functionalized carbon nanotubes (CNTs). Fourier transform infrared (FTIR) spectroscopy was used to characterize the presence and types of functional groups in functionalized MWCNTs, while the dispersion of MWCNTs in PMMA was characterized using scanning electron microscopy (SEM). The prepared nanocomposites were foamed using carbon dioxide (CO2) as the foaming agent. The cell morphology was observed by SEM, and the cell size and cell density were calculated via image analysis. It was found that both the synthesis methods and CNTs surface functionalization affect the MWCNTs dispersion in the polymer matrix, which in turn profoundly influences the cell nucleation mechanism and cell morphology. The MWCNTs are efficient heterogeneous nucleation agents leading to increased cell density at low particle concentrations. A mixed mode of nucleation mechanism was observed in nanocomposite foams in which polymer rich and particle rich region co-exist due to insufficient particle dispersion. This leads to a bimodal cell size distribution. Uniform dispersion of MWCNTs can be achieved via synergistic combination of improving synthesis methodology and CNTs surface functionalization. Foams from these nanocomposites exhibit single modal cell size distribution and remarkably increased cell density and reduced cell size. An increase in cell density of ∼70 times and reduction of cell size of ∼80% was observed in nanocomposite foam with 1% MWCNTs.  相似文献   

11.
Multi‐walled carbon nanotubes (MWCNTs)/polyethylene (PE) nanocomposites were prepared via in situ polymerization with MWCNTs supported Bis‐ (cyclopentadienyl) zirconium dichloride (Cp2ZrCl2) catalyst. X‐ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FESEM) results implied that Cp2ZrCl2 catalyst was immobilized in the surface of the MWCNTs supports via a bridge of methylaluminoxane (MAO). The efficient dispersion of MWCNTs in PE matrix and the strong compressive forces associated with PE on the MWCNTs were demonstrated by means of transmission electron microscope (TEM), FESEM and Raman spectra. With introducing 0.2 wt% MWCNTs, both the tensile strength and elongation of MWCNTs/PE nanocomposite were improved by factors of 1.6 (from 29 to 45 MPa) and 1.5 (from 909% to 1360%) comparing with the pure PE, respectively. Morphology observation of fractured surface revealed that the PE firmly adhered to the nanotubes, which was responsible for the significant improvement of the mechanical properties of nanocomposites. Thermal stabilities of the nanocomposites were significantly improved. In addition, the MWCNTs/PE nanocomposites showed very high ultraviolet (UV) shielding property, which could increase photooxidative stability of the PE. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

12.
Economically viable high‐density polyethylene (HDPE)/graphene nanocomposites were produced using mass produced graphene powder and an industrial twin‐screw melt‐compounding machine. Rheological and electrical properties were investigated and scanning electron microscopy was carried out to investigate graphene dispersion and its network formation in the matrix. Mechanical properties of the nanocomposites were evaluated using tensile, flexural and impact tests. Differential scanning calorimetry analysis indicated that the crystalline structure of the polymer might be affected by high loadings of graphene. SEM evaluation revealed reasonable graphene dispersion in the matrix. In addition, the amount of graphene required to form a percolated network was similar for both rheological and electrical networks. The nanocomposites exhibited a significant increase in Young's and flexural moduli without a notable reduction in impact strength up to 14 wt% graphene loading. In these experiments, compounding graphene powder with HDPE produced a clear and distinct improvement in mechanical properties at an industrially suitable low cost. POLYM. ENG. SCI., 59:675–682, 2019. © 2018 Society of Plastics Engineers  相似文献   

13.
In this work we have studied the utilization of multiwalled carbon nanotubes (MWCNTs) as filler‐reinforcement to improve the performance of plasticized starch (PS). The PS/MWCNTs nanocomposites were successfully prepared by a simple method of solution casting and evaporation. The morphology, thermal behavior, and mechanical properties of the films were investigated by means of scanning electron microscopy, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile testing. The results indicated that the MWCNTs dispersed homogeneously in the PS matrix and formed strong hydrogen bonding with PS molecules. Compared with the pure PS, the tensile strength and Young's modulus of the nanocomposites were enhanced significantly from 2.85 to 4.73 MPa and from 20.74 to 39.18 MPa with an increase in MWCNTs content from 0 to 3.0 wt %, respectively. The value of elongation at break of the nanocomposites was higher than that of PS and reached a maximum value as the MWCNTs content was at 1.0 wt %. Besides the improvement of mechanical properties, the incorporation of MWCNTs into the PS matrix also led to a decrease of water sensitivity of the PS‐based materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
In this paper, γ‐ray radiation technique was utilized to simply functionalize multi‐walled carbon nanotube (MWCNT) with amino groups. The successful amino functionalization of MWCNTs (MWCNTs‐Am) was proven and the physicochemical properties of MWCNTs before and after radiation grafting modifications were characterized using FT‐IR, X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results indicated that the γ‐ray radiation had the visible effects on the surface properties of MWCNTs. The effects of various functionalized MWCNTs on morphological, thermal, and mechanical properties of an epoxy‐based nanocomposite system were investigated. Utilizing in situ polymerization, 1 wt% loading of MWCNT was used to prepare epoxy‐based nanocomposites. Compared to the neat epoxy system, nanocomposites prepared with MWCNT‐Am showed 13.0% increase in tensile strength, 20.0% increase in tensile modulus, and 24.1% increase in thermal decomposition temperature. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

15.
Thermosetting polyurethane (PU) multi‐walled carbon nanotube (MWCNT) nanocomposites at loadings up to 1 wt % were prepared via an addition polymerization reaction. The morphology of the nanocomposites and degree of dispersion of the MWCNTs was studied using a combination of scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and wide angle X‐ray diffraction (WAXD), and revealed the nanotubes to be highly dispersed in the PU matrix. Addition of just 0.1 wt % MWCNTs resulted in significant enhancements in stiffness, strength and toughness. Increases in Young's modulus, % elongation at break and ultimate tensile strength of 561, 302 and 397% were measured for the nanocomposites compared to the unfilled PU. The effect of the MWCNTs on the modulus of the PU was evaluated using the Rule of Mixtures, Krenchel and Halpin‐Tsai models. Only the Halpin‐Tsai model applied to high aspect ratio nanotubes was in good agreement with the modulus values determined experimentally. Strong interfacial shear stress was found between PU chains and nanotubes, up to 439 MPa, calculated using a modified Kelly‐Tyson model. Evidence for strong interfacial interactions was obtained from the Raman spectra of both the precursor materials and nanocomposites. When the MWCNTs were added to the isophorone diisocyanate an up‐shift of 14 cm?1 and on average 40 cm?1 was obtained for the position of the carbon‐hydrogen (C? H) out‐of plane bending (766 cm?1) and isocyanate symmetric stretch (1420 cm?1) modes respectively. Moreover, an up‐shift of 24 cm?1 was recorded for the nanotube tangential mode (G‐band) for the 1.0 wt % nanocomposite because of the compressive forces of the PU matrix acting on the MWCNTs. The dynamic mechanical (DMA) properties of the PU thermoset and the nanocomposites were measured as a function of temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
A number of batch polymerizations were performed to study the effect of multi‐walled carbon nanotubes (MWCNTs) on the properties of PMMA/MWCNTs nanocomposites. To improve the dispersion of nanotubes in PMMA matrix, MWCNTs were functionalized with methacrylate groups via a four‐step modification process and the modified nanoparticles were used to synthesize the nanocomposites. The prepared samples were characterized by Raman spectroscopy, thermogravimetric analysis, dynamic mechanical thermal analysis, differential scanning calorimetry, gel permeation chromatography, UV–visible, and TEM techniques. According to the results, modified nanotubes improved thermal and mechanical properties better than the pristine MWCNTs. The main improvement in the mechanical and thermophysical properties was achieved for the nanocomposite containing 0.5 wt% of MWCNTs. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

17.
The physical and mechanical properties of poly(l-lactide)/poly(??-caprolactone) (PLLA/PCL) blends reinforced with multiwalled carbon nanotubes (MWCNTs) before and after in vitro degradation were investigated. Because of brittleness, PLLA needs to be plasticized by PCL as a soft polymer. The MWCNTs are used to balance the stiffness and the flexibility of PLLA/PCL blends. The results showed that with incremental increase in concentration of MWCNTs in composites, the agglomerate points of MWCNTs were increased. The physical and mechanical properties of prepared PLLA/PCL blends and MWCNT/PLLA/PCL nanocomposites were characterized. The X-ray diffraction analysis of the prepared blends and composites showed that MWCNTs, as heterogeneous nucleation points, increased the lamella size and therefore the crystallinity of PLLA/PCL. The mechanical strength of blends was decreased with incremental increase in PCL weight ratio. The mechanical behavior of composites showed large strain after yielding and high elastic strain characteristics. The tensile tests results showed that the tensile modulus and tensile strength are significantly increased with increasing the concentration of MWCNTs in composites, while, the elongation-at-break was decreased. The in vitro degradation rate of polymer blends in phosphate buffer solution (PBS) increased with higher weight ratio of PCL in the blend. The in vitro degradation rate of nanocomposites in PBS increased about 65% when the concentration of MWCNTs increased up to 3% (by weight). The results showed that the degradation kinetics of nanocomposites for scaffolds can be engineered by varying the contents of MWCNTs.  相似文献   

18.
The objective of this study is to investigate the effects of carbon nanotube (CNT) content, surface modification, and silane cross‐linking on mechanical and electrical properties of linear low‐density polyethylene/multiwall CNT nanocomposites. CNTs were functionalized by vinyltriethoxysilane to incorporate the ─O─C2H5 functional groups and were melt‐blended with polyethylene. Silane‐grafted polyethylene was then moisture cross‐linked. Silanization of CNT was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and EDX analysis. Hot‐set test results showed that silane cross‐linking of polyethylene and incorporation of modified CNTs into polyethylene led to an increase in cross‐linking density and the number of entanglements resulting in a decrease in elongation. It was found that the addition of pristine multiwall carbon nanotubes (MWCNTs) and functionalized MWCNTs does not affect silane cross‐linking density. Silane modification resulted in a stronger adhesion of the silane cross‐linked LLDPE to silanized MWCNTs according to scanning electron microscopy micrographs. Additionally, the electrical tests revealed that the silane modification of CNTs results in an improvement in electrical properties of nanocomposites, while silane cross‐linking will not have an effect on electrical properties. Rheological properties of MWCNT/LLDPE nanocomposites have been studied thoroughly and have been discussed in this study. Moreover, according to TGA test results, modification of the MWCNTs led to a better dispersion of them in the LLDPE matrix and consequently resulted in an improvement in thermal properties of the nanocomposites. Crystallinity and melting properties of the nanocomposites have been evaluated in detail using DSC analysis. J. VINYL ADDIT. TECHNOL., 26:113–126, 2020. © 2019 Society of Plastics Engineers  相似文献   

19.
To increase the applicability of multiwalled carbon nanotubes (MWCNTs), functional groups were generated on the generally inert surface of MWCNTs using gliding arc (GA) plasma. MWCNTs were modified using plasma polymerization with styrene (St) as monomer. The surface compositional and structural changes that occur on MWCNTs were investigated using FT‐IR, Raman spectroscopy, BET surface area, and elemental analysis. Dispersion of the treated MWCNTs in different solvents was evaluated. Transmission electron microscopy images showed that the plasma‐treated MWCNTs had a better dispersion than the untreated ones in nonpolar solvents. Subsequently, MWCNTs‐reinforced polypropylene (PP) composites were prepared by internal batch mixing with the addition of 1.0 wt % MWCNTs. The morphology of MWCNTs/PP nanocomposites was studied through scanning electron microscopy. Observations of SEM images showed that the plasma‐treated MWCNTs had a better dispersion than the untreated MWCNTs either on the composite fracture surfaces or inside the PP matrix. Moreover, the mechanical tests showed that the tensile strength and elongation at break were improved with the addition of polystyrene‐grafted MWCNTs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Multi-wall carbon nanotubes (MWCNTs) are usually used as conductive fillers to improve the conductive and mechanical properties of ultra-high molecular weight polyethylene (UHMWPE) simultaneously. But the poor dispersion of MWCNTs in UHMWPE and the weak compatibility between MWCNTs and UHMWPE lead to lots of defect sites and limit the efficiency of load transfer between UHMWPE and MWCNTs. To solve these problems, octadecylamine (ODA) functionalized MWCNTs (MWCNT-ODA) were prepared and its effects on the conductive and mechanical properties of UHMWPE were investigated. The X-ray photoelectron spectrometer (XPS) measurements indicated that ODA was successfully grafted on the surface of MWCNTs. The electrical conductivity tests showed that 0.5 wt% addition of MWCNT-ODA can obviously reduce the volume resistivity of UHMWPE composites by 12 orders of magnitude compared to pure UHMWPE. Meanwhile, its impact strength achieved an increase of about 42.1% and the tensile strength was slightly improved from 33.5 MPa to 40.7 MPa compared with that of UHMWPE. The microstructure features of the impact fracture surfaces were analyzed by field emission scanning electron microscope (SEM). This result revealed the existence of a stronger interfacial force between the UHMWPE and MWCNT-ODA, which is responsible for the improvement of mechanical properties of UHMWPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号