首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了一种CMOS(互补MOS)集成风速风向传感器,使用恒温差(CTD)控制模式将芯片加热,使其中间加热区域的温度高于周围环境(风)温度一定值。该传感器在有风吹过它的表面时能同时测量风速和风向。采用4个串联的热堆测量芯片中心区域的平均温度,这种测温的方法简单、新颖。在简单阐述CMOS硅热流量传感器的工作原理和结构之后,主要介绍驱动和信号读取电路。经过风洞测试,传感器能够测量风速0~23m/s,具有良好的线性度和灵敏度,同时,传感器360°内方向敏感。  相似文献   

2.
针对无法获得可靠羽流流向信息不利于实现羽流追踪的问题,提出了一种基于决策树的羽流追踪移动机器人自主决策方法。该方法通过移动机器人两侧的浓度传感器采集到的浓度信息,利用追踪的行为规则建立决策树模型,获得行为决策信息,使机器人高效地追踪到羽流并精确地定位。由于浓度变化关系蕴含了羽流的流向及流速信息,从而取代了传统方法中流向及流速传感器。在扩散环境下,通过移动机器人羽流追踪实验,实现了良好的源定位效果。  相似文献   

3.
设计了一种基于体微机械加工技术的新型硅电容式流速流向传感器.这种传感器由圆柱型阻流体和支撑梁构成,这种结构将流体的流速流向信息转化为阻流体的位移,通过四组正交电容来测量位移,从而得到流体的流速和流向.理论计算了传感器的结构尺寸并利用有限元分析方法计算了传感器的电容输出.  相似文献   

4.
Design, fabrication and characterization of micro flow sensor were investigated based on the inspiration of biological hair cell in a nature. The micro scale artificial hair cell sensor was designed as considering two parts; first the high aspect ratio cilium structure which works as a hair cell of fish and second the mechanoreceptor structure where the drag force by flow are actually measured. Parameters of cilium structure were designed based on static modelling as follow: 300 μm diameter and 2 mm height. The high aspect ratio cilium structure was precisely fabricated using a hot embossing process with the developed separated micro mold system prepared by LIGA (from the German Lithographi, Galvanoformung, Abformung) process. The mechanoreceptor was formulated with a force sensitive resistor with four symmetric electrodes to analyze the direction and the magnitude of target flow. Performance of assembled sensor was characterized using the prepared water channel. Flow velocity was sensed with the magnitude of signal and the direction of flow was distinguished by analyzing the signals from four mechanoreceptors.  相似文献   

5.
设计了一种内燃机用气体流速、流向传感器,阐述了传感器的工作原理;介绍了应用单片机对传感器输出信号进行线性化和温度补偿处理的方法。试验结果表明:该传感器在-20~100℃温度范围内,温度稳定性高,零点温度漂移为4.0×10-3%FS/℃,准确度可达到±1.0%FS,性能指标达到了设计要求。  相似文献   

6.
The need to accurately measure flow profiles in microfluidic channels is well recognised. In this work, we present a new optical feedback interferometry (OFI) flow sensor that accurately measures local velocity in fluids and enables reconstruction of a velocity profile inside a microchannel. OFI is a self-aligned interferometric technique that uses the laser as both the transmitter and the receiver thus offering high sensitivity, fast response, and a simple and compact optical design. The system described here is based on a commercial semiconductor laser and has been designed to achieve a micrometer-range spatial resolution. The sensor performance was validated by reconstructing the velocity profile inside a circular cross-section flow-channel with 320  $\upmu $ m internal diameter, with a relative error smaller than 1.8 %. The local flow velocity is directly measured, thus avoiding the need for model based profile calculation and uncertainties inherent to this approach. The system was validated by successfully extracting the flow profiles in both Newtonian and shear-thinning liquids.  相似文献   

7.
《Advanced Robotics》2013,27(1):49-69
The purpose of this study is to develop a virtual wall display system for a walk simulator to grope its way in an 'invisible' situation, such as in a building filled with dense smoke, etc. To reproduce the realistic haptic sense of a building wall, the implementation of the wideness and the rigidity of wall are essential. Wideness of a virtual wall was realized by a hand-tracking control combined with a small wall panel which is mounted on a three-axis Cartesian manipulator. A 6-d.o.f. magnetic tracking system was utilized for the hand position tracking in the non-contact situation of the hand and the panel. In the contact situation, high rigidity of the wall was attained as stiffness in the normal direction is provided to the wall panel to represent the haptic sense of a rigid wall. Force-based tracking provides the low stiffness in the tangential direction to make the wall panel move easily along the direction of hand movement to represent a wide plain wall. A three-axis force sensor is attached on the wall panel to detect the contact force. The realization of smooth switching between both tracking controls provides the user with the haptic feel of the presence and continuity of a virtual wall. In addition, the frictional sensation has the effect of giving the system more reality. Experimental results have shown the effectiveness of the hybrid tracking method for the virtual wall system.  相似文献   

8.
Utilizing conventional micro-electro-mechanical systems techniques, this study fabricates and characterizes a novel micro gas flow sensor comprising four silicon nitride/silicon wafer cantilever beams arranged in a cross-form configuration. The residual stresses induced within the beams during their fabrication cause the tip of each beam to curve slightly in the upward direction. However, as air travels over the surface of the sensor, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The velocity of the air flow is then determined by measuring the corresponding change in resistance of the piezoresistors patterned on the upper surface of each cantilever beam. It is shown that by measuring the change in resistance of all four cantilever beams, the proposed sensor can detect not only the velocity of the air flow, but also its direction.  相似文献   

9.
模仿昆虫感觉毛的结构,设计制备了表面对称电极含金属芯PVDF气流传感器SMPF(Symmetric Metal core PVDF Fiber).利用自制的拉制纤维设备,制备了SMPF胚体.在表面涂镀对称电极后,经过高温极化、电极封装等工艺后,成功制备了SMPF气流传感器.基于第1类压电方程和流体力学理论,建立了悬臂梁结构的SMPF气流传感模型,分析了传感器输出信号与纤维长度、气流速度以及气流作用方向之间的关系.将悬臂梁结构的SMPF安置在气流流场中,进行冲击气流测试实验.实验结果表明,SMPF气流传感器的输出信号与纤维长度成非线性关系,与气流速度成平方关系,与气流作用方向成"8"字形关系.实验结果验证了理论模型,表明SMPF传感器能够感知气流的速度和作用方向,具有较广泛的工程应用前景.  相似文献   

10.
正弦激励法被应用于速度或加速度传感器的校准中。与以往不同的是,电液位置伺服系统首次被作为实验平台应用。而基于最小二乘的正弦逼近方法依然是算法的核心,该方法不仅能够得到真正意义上的瞬时速度信号,而且能够在存在噪声的情况下取得最优解。然而,该方法不仅适用于传统意义上的信号标定中,还可以被推广到用线加速度传感器测量定回转轴角加速度的问题中。实验结果表明:在上述2个问题中该方法均取得了良好的效果。  相似文献   

11.
Phantom-based haptic interaction with virtual objects   总被引:1,自引:0,他引:1  
In 1993, haptic interaction with computers took a significant step forward with the development of the Phantom haptic interface. This simple device has spawned a new field analogous to computer graphics-computer haptics-defined as the discipline concerned with the techniques and processes associated with generating and displaying synthesized haptic stimuli to the human user. Inspired by the authors' previous work in interpreting robot touch sensor information and study of human touch perception, the Phantom interface permits users to feel the forces of interaction they would encounter while touching objects with the end of a stylus or the tip of their finger. The resulting sensations prove startling, and many first-time users are quite surprised at the compelling sense of physical presence they encounter when touching virtual objects. To appreciate why the Phantom system succeeded where others failed, you need to understand the nature and functioning of the human haptic system.  相似文献   

12.
为优化暖通空调系统的运行效率,构建一种应用于暖通空调中新型超声波流量传感器,提出暖通空调系统中新型传感器的应用方法。首先根据传感器运行输入量和输出量两者之间的关系分析超声波流量传感器的静态特性和动态特性,并计算输入量及输出量的最大重复差。以此为依据分析传感器运行状态变化规律,并研究超声波流量传感器的传播速度和流速关系,将流速关系进行数字化处理,实现新型传感器的运行数值测定。通过实验与仿真进行传感器网络延时时长、声波传播速度、能耗对比测试与性能检测,结果表明,所提方法传感器网络生存期长、效率高、能耗低,具有一定的实用价值。  相似文献   

13.
Complex flow inside a hard disk drive (HDD) was investigated using a simplified 3.5″ model for clarifying the mechanism causing flow-induced vibration. In contrast to the authors’ related study in the past, our model had a non-axisymmetric geometry equipped with a shroud opening and a read/write arm (RWA). The model is designed to serve as a benchmark to study HDD flows both in experiments and in numerical simulations. The complex flow behavior in the disk-to-disk space was investigated with the RWA inserted into the inter-disk space. Flow measurements were carried out with a test rig which consisted of transparent disks, RWA and covers. The measurements were performed at the disk Reynolds number Re d  = 1.2 × 105 which corresponds to the rotation speed of 7,700 rpm of a real 3.5″ HDD. Two sets of the flow measurements were performed—the first Reynolds stress components measured along four different lines with the RWA inserted at a shallow angle (experiment I), and the other mean and rms velocity statistics along several selected lines with two different RWA insertion angles (experiment II). The mean velocity and velocity variance were obtained at a spatial resolution of 30 μm along eight different lines perpendicular to the disk surfaces. The high spatial resolution of the results was achieved using a laser Doppler velocity profile sensor with a physical resolution in micrometers and a velocity uncertainty of 0.2 %. In the experiment I, the mean velocity and velocity variance statistics were mostly consistent with the common findings in other studies using axisymmetric models except for the flow behavior in the radial direction at the shroud opening. The secondary flow behavior was likely caused by the shroud opening which was not included in most of the models in the past. In experiment II, the mean velocity and velocity variance were successfully measured through examination of the flow above and below the RWA in the space between the rotating disks. The resulting velocity statistics exhibit turbulent Couette-like flow in the narrow 1 mm space between the disks and the RWA.  相似文献   

14.
《Advanced Robotics》2013,27(1-2):165-181
To properly align objects in the real and virtual worlds in an augmented reality (AR) space it is essential to keep tracking the camera's exact three-dimensional position and orientation (camera pose). State-of-the-art analysis shows that traditional vision-based or inertial sensor-based solutions are not adequate when used individually. Sensor fusion for hybrid tracking has become an active research direction during the past few years, although how to do it in a robust and principled way is still an open problem. In this paper, we develop a hybrid camera pose-tracking system that combines vision and inertial sensor technologies. We propose to use the particle filter framework for the sensor fusion system. Particle filters are sequential Monte-Carlo methods based upon a point mass (or 'particle') representation of probability densities, which can be applied to any state space model and which generalize the traditional Kalman filtering methods. We have tested our algorithm to evaluate its performance and have compared the results obtained by the particle filter with those given by a classical extended Kalman filter. Experimental results are presented  相似文献   

15.
An extrinsic fibre Fabry-Pérot interferometric (EFFPI) sensor for the measurement of velocity and displacement of a vibrating target has been demonstrated in this work. It operates on the principle of a pseudo-double cavity within a single interferometric or “sensing” arm which, in addition, provides a sense of direction of the moving target. This has been made possible by the introduction of a birefringent film positioned along the optical path between the sensing fibre end and the intended target. Two sets of interference signals are thus propagated and detected along one fibre arm to give robust and repeatable displacement–velocity information which have been found to be relatively independent on other external effects such as minor temperature changes. The sensor has been found to be capable of measuring the desired velocity information of an inclined target while typical excitation frequencies investigated ranged from 2 to 60 Hz. In addition, two sensor configurations have been studied, one based on “conventional” optical fibres at 780 nm while the other employs a polarisation-maintaining (PM) (PANDA type) fibre as the sensing arm and operates at 1310 nm.  相似文献   

16.
In this study, the heat and fluid flows were investigated when fluids at varying temperatures are mixed in a T-shaped microchannel. A temperature gradient was formed using two Peltier modules in the junction of a T-shaped microchannel, and the velocity fields were measured using microparticle image velocimetry (µ-PIV). Measurements were obtained at five planes in the direction of the depth by changing the focal position of the objective lens. Under the operation of the Peltier modules, the flow velocity on the heated side was increased and the velocity on the cooled side was decreased in the upper area in the vertical direction. Furthermore, in the lower area, the flow velocity on the cooled side was increased and the velocity on the heated side was decreased. The velocity difference between the two inlets depends on the applied power of the Peltier modules. We also investigated the mixing behavior downstream of the channel, and a strong spiral flow was clearly observed. The spiral flow should enlarge the contact interface area, and it should be useful for application to a micromixer. We first observed the fluid stratification induced by the temperature in the microchannel. This phenomenon is useful for application in microfluidic devices as a contactless micromixer.  相似文献   

17.
为了探索平板微热管的传热特性,了解微热管内不同温度区间的蒸汽传输特性,开展了热式气体微流量传感器及其检测系统的设计。设计了一种便于探索最佳温度测量点的热式微流量传感器结构,利用MEMS工艺进行加工制作,在不同环境温度下对其性能进行了测试,得到了环境温度与热式微流量传感器性能的关系。基于MSP430单片机和C#语言自主开发了流量传感器检测系统,可对一定范围内的流量进行实时检测,并实时绘制流速随时间的变化曲线。研究表明,采用本文设计的热式微流量传感器结构,可以检测高于室温环境下的微流量气体,并可通过提高加热器温度或改变测温电阻对的测量位置来提高测量灵敏度。  相似文献   

18.
基于EKF的无刷直流电动机转速控制系统设计   总被引:1,自引:0,他引:1  
设计了基于扩展卡尔曼滤波的无刷直流电动机转速控制系统,克服传统无刷直流电机控制系统由于存在位置传感器给电机带来的诸多不利影响。本系统中,通过测量定子侧的电流值和电压值,可以逐步估计出转子的转速和位置,为无传感器电机控制打下基础。通过仿真实验,验证EKF算法估算转子位置信息的可行性。  相似文献   

19.
分析了改进表面分流型二维位置敏感探测器(PSD)的工作原理及信号调理电路,针对PSD位置检测误差大的缺点,设计了利用万能工具显微镜进行标定的实验系统,运用误差理论对传感器在A区和B区的X向及Y向位置测试数据进行了校正。实验结果表明:应用这种校正方法,可减少PSD的位置检测误差,其中,A区位置检测误差可减少到±0.02mm。  相似文献   

20.
用声学多普勒流速剖面仪(ADCP)进行流量测量是近几年兴起的新技术,但声学多普勒流速剖面仪如何在实验室环境中进行测试是一个难点.给出了一种声学多普勒流速剖面仪实验室测试方法,该实验室由水槽、气泡发泡装置、仪器固定支架和自动化系统构成,通过气泡发泡装置模拟自然河流悬浮颗粒和水中气泡,仪器固定支架固定仪器并旋转超声换能器使其和水流方向一致,自动化系统携带仪器前进后退形成相对流速.此方法可以比测实测流速和自动化系统行进速度,简化了国标、行标中声学多普勒流速剖面仪的检测方法以及测试条件和设备需求,大大降低了开发仪器的测试、检测成本,更有利于国内仪器的研制和推广.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号