首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, synergy between graphene platelets (GnPs) and carbon nanotubes (CNTs) in improving lap shear strength and electrical conductivity of epoxy composite adhesives is demonstrated. Adding two-dimensional GnPs with one-dimensional CNTs into epoxy matrix helped to form global three-dimensional network of both GnPs and CNTs, which provide large contact surface area between the fillers and the matrix. This has been evidenced by comparing the mechanical properties and electrical conductivity of epoxy/GnP, epoxy/CNT, and epoxy/GnP-CNT composites. Scanning electron microscopic images of lap shear fracture surfaces of the composite adhesives showed that GnP-CNT hybrid nanofillers demonstrated better interaction to the epoxy matrix than individual GnP and CNT. The lap shear strength of epoxy/GnP-CNT composite adhesive was 89% higher than that of the neat epoxy adhesive, compared with only 44 and 30% increase in the case of epoxy/GnP and epoxy/CNT composite adhesives, respectively. Electrical percolation threshold of epoxy/GnP-CNT composite adhesive is recorded at 0.41 vol %, which is lower than epoxy/GnP composite adhesive (0.58 vol %) and epoxy/CNT composite adhesive (0.53 vol %), respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48056.  相似文献   

2.
This study develops a facile approach to fabricate adhesives consists of epoxy and cost-effective graphene platelets (GnPs). Morphology, mechanical properties, electrical and thermal conductivity, and adhesive toughness of epoxy/GnP nanocomposite were investigated. Significant improvements in mechanical properties of epoxy/GnP nanocomposites were achieved at low GnP loading of merely 0.5?vol%; for example, Young’s modulus, fracture toughness (K1C) and energy release rate (G1C) increased by 71%, 133% and 190%, respectively compared to neat epoxy. Percolation threshold of electrical conductivity is recorded at 0.58?vol% and thermal conductivity of 2.13?W m?1 K?1 at 6?vol% showing 4 folds enhancements. The lap shear strength of epoxy/GnP nanocomposite adhesive improved from 10.7?MPa for neat epoxy to 13.57?MPa at 0.375?vol% GnPs. The concluded results are superior to other composites or adhesives at similar fractions of fillers such as single-walled carbon nanotubes, multi-walled carbon nanotubes or graphene oxide. The study promises that GnPs are ideal candidate to achieve multifunctional epoxy adhesives.  相似文献   

3.
An experimental study was conducted on the strength of adhesively bonded steel joints, prepared epoxy and acrylic adhesives. At first, to obtain strength characteristics of these adhesives under uniform stress distributions in the adhesive layer, tensile tests for butt, scarf and torsional test for butt joints with thin-wall tube were conducted. Based on the above strength data, the fracture envelope in the normal stress-shear stress plane for the acrylic adhesive was compared with that for the epoxy adhesive. Furthermore, for the epoxy and acrylic adhesives, the effect of stress triaxiality parameter on the failure stress was also investigated. From those comparison, it was found that the effect of stress tri-axiality in the adhesive layer on the joint strength with the epoxy adhesive differed from that with the acrylic adhesive. Fracture toughness tests were then conducted under mode l loading using double cantilever beam (DCB) specimens with the epoxy and acrylic adhesives. The results of the fracture toughness tests revealed continuous crack propagation for the acrylic adhesive, whereas stick-slip type propagation for the epoxy one. Finally, lap shear tests were conducted using lap joints bonded by the epoxy and acrylic adhesives with several lap lengths. The results of the lap shear tests indicated that the shear strength with the epoxy adhesive rapidly decreases with increasing lap length, whereas the shear strength with the acrylic adhesive decreases gently with increasing the lap length.  相似文献   

4.
Recently developed epoxy paste adhesives, reactive hot melts, adhesive film tape and polyurethane adhesives are presented for structural bonding in the automotive industry. Paste adhesives usually require a precure stage to obtain handling strength of the joints and to guarantee wash-out resistance of the adhesive in the paint baths. This step can be omitted with reactive hot melts and adhesive film tape, which are solid before and after their application. In addition they allow an improved working hygiene. Some mechanical properties of the adhesives are shown such as lap shear strength and peel strength as well as lap shear strength as a function of the bondline thickness. Results of the excellent durability of epoxy one-component pastes, reactive hot melts and adhesive film tape are given from cyclic environmental and salt spray tests.  相似文献   

5.
The effects of corrosive environments on adhesive bonds to electro-galvanized, zinc/aluminum alloy coated, coated electro-galvanized, and cold-rolled steels have been investigated. Bonds prepared using a rubber-modified dicyandiamide-cured epoxy adhesive, an epoxy-modified poly(vinyl chloride)-based adhesive, an acrylic-modified poly(vinyl chloride)-based adhesive a one-part urethane adhesive, and a two-component epoxy-modified acrylic adhesive were exposed under no-load conditions to constant high humidity or cyclic corrosion exposure for 50 days or 50 cycles (10 weeks) respectively.

Over the course of this study, exposure to constant high humidity had little effect on lap shear strength for any of the systems studied. Bond failures were initially cohesive, and with few exceptions remained so.

Bond strength retention under the cyclic corrosion exposure conditions employed was strongly dependent on adhesive composition and on substrate type. On galvanized substrates, lap shear strengths for the poly(vinyl chloride)-based adhesives were reduced by 90-100% during the course of the corrosion exposure, and a change in the mode of bond failure (from cohesive to interfacial) was observed. On the coated electro-galvanized steel substrate, the poly(vinyl chloride)-based adhesives showed about 50% retention in lap shear strength and a cohesive failure throughout most of the corrosion test. The dicyandiamide-cured epoxy adhesive used in this study generally showed the best lap shear strength retention to zinc-coated substrates; bonds to cold-rolled steel were severely degraded by corrosion exposure. The performance of the acrylic and urethane adhesives were intermediate to the dicyandiamide-cured epoxy and poly(vinyl chloride)-based adhesives in strength retention.  相似文献   

6.
The effects of corrosive environments on adhesive bonds to electro-galvanized, zinc/aluminum alloy coated, coated electro-galvanized, and cold-rolled steels have been investigated. Bonds prepared using a rubber-modified dicyandiamide-cured epoxy adhesive, an epoxy-modified poly(vinyl chloride)-based adhesive, an acrylic-modified poly(vinyl chloride)-based adhesive a one-part urethane adhesive, and a two-component epoxy-modified acrylic adhesive were exposed under no-load conditions to constant high humidity or cyclic corrosion exposure for 50 days or 50 cycles (10 weeks) respectively.

Over the course of this study, exposure to constant high humidity had little effect on lap shear strength for any of the systems studied. Bond failures were initially cohesive, and with few exceptions remained so.

Bond strength retention under the cyclic corrosion exposure conditions employed was strongly dependent on adhesive composition and on substrate type. On galvanized substrates, lap shear strengths for the poly(vinyl chloride)-based adhesives were reduced by 90–100% during the course of the corrosion exposure, and a change in the mode of bond failure (from cohesive to interfacial) was observed. On the coated electro-galvanized steel substrate, the poly(vinyl chloride)-based adhesives showed about 50% retention in lap shear strength and a cohesive failure throughout most of the corrosion test. The dicyandiamide-cured epoxy adhesive used in this study generally showed the best lap shear strength retention to zinc-coated substrates; bonds to cold-rolled steel were severely degraded by corrosion exposure. The performance of the acrylic and urethane adhesives were intermediate to the dicyandiamide-cured epoxy and poly(vinyl chloride)-based adhesives in strength retention.  相似文献   

7.
Nanoreinforcing fillers have shown outstanding mechanical properties and widely used as reinforcing materials associated to polymeric matrices for high performance applications. In this study, a series of multiwalled carbon nanotubes (MWCNTs)‐, nano‐Al2O3‐, nano‐SiO2‐, and talc‐reinforced epoxy resin adhesives composites were developed. The influence of different types and contents of nanofillers on adhesion, elongation at break, and thermal stability (under air and nitrogen atmospheres) of diglycidyl ether of bisphenol A (DGEBA)/epoxy novolac adhesives was investigated. A simple and effective approach to prepare adhesives with uniform and suitable dispersion of nanofillers into epoxy matrix was found to be mechanical stirring combined with ultrasonication. Transmission electron microscopic and scanning electron microscopic investigations revealed that nanofillers were homogeneously dispersed in epoxy matrix at optimized nanofiller loadings. Adhesion strength was measured by lap shear strength test as a function of nano‐Al2O3 and MWCNTs loadings. The results indicated that the lap shear strength was significantly increased by about 50% and 70% with addition of MWCNTs and nano‐Al2O3 up to a certain level, respectively. The highest lap shear strength was reached at 1.5 wt % of nano‐Al2O3 loading. MWCNTs at all loadings (except 3 wt %) and nano‐Al2O3 have enhanced onset of degradation temperature and char yield of the adhesives. By combined incorporation of 0.75 wt % nano‐Al2O3 and 0.75 wt % MWCNTs into the epoxy novolac/DGEBA blend adhesives a synergistic effect was observed in the thermal stability of the adhesives at high temperatures (800°C). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40017.  相似文献   

8.
Multi-Walled Carbon NanoTubes (MWCNT) are ideally suited to be used for damage sensing in fiber reinforced composite materials, and are used for structural health monitoring in adhesive joints. In this work, the capability of MWCNTs for condition monitoring of a single lap Al-Al adhesive joints (SLJ) under shear load is studied using impedance measurements. Different weight percent of MWCNT, i.e. 2.5, 6 and 9 wt.% are added to epoxy adhesive. Epoxy adhesive containing 9 wt.% MWCNT is identified during shear loading to have the highest ultimate strength among the considered specimens and provide the best sensory properties. To provide a more concise evaluation of the damage progression in the adhesive layer under shear stress, artificial defects are inserted into the SLJ specimens. The effects of square and circular defects on the damage progression in the adhesive layer are studied. The results show that primary microcracks are initiated at and consequently develop from the defect boundary in the adhesive joints with larger size of defect. It was found that the shape of the defect does not have a significant effect on the impedance response and sharp resistance changes for specimens with circular and square defect areas of 70% overlap area were about 4.55 and 4.2% respectively. Additionally, when the crack grows entirely through the adhesive layer, a nonzero slope of the resistance change resulted even for low levels of shear displacement.  相似文献   

9.
摘要:水性环氧树脂通常含有水溶性分子或分子链,导致在高温和潮湿条件下作为木材胶粘剂时耐水性及力学性能较差。采用有机改性的纳米蒙脱土改性水性环氧树脂增强水性环氧树脂胶粘剂的耐水性及力学性能。并通过乳液包覆蒙脱土的方法与直接共混的方法对比,研究了不同添加量有机蒙脱土(0%,3%,6%,9%)对胶粘剂性能的影响。胶粘剂的耐水性及力学性能通过测量胶粘剂在干燥及潮湿条件下的剪切强度来表示。通过TGA、SEM、TEM、DSC研究了复合胶粘剂的热稳定性和结构。结果表明,在水性环氧树脂中添加有机改性的纳米蒙脱土,可以有效地提高胶粘剂的粘结强度,此外,采用乳液包有机覆蒙脱土的方法比直接共混的方法制备得到胶粘剂,有机蒙脱土在胶粘剂中分布更均匀,具有更优异的力学性能,说明有机蒙脱土在复合材料中的分散质量是影响复合胶粘剂性能的主要原因。  相似文献   

10.
Both epoxy resin and acid‐modified multiwall carbon nanotube (MWCNT) were treated with 3‐isocyanatopropyltriethoxysilane (IPTES). Scanning electron microscopy (SEM) and transmission electronic microscope (TEM) images of the MWCNT/epoxy composites have been investigated. Tensile strength of cured silane‐modified MWCNT (1.0 wt %)/epoxy composites increased 41% comparing to the neat epoxy. Young's modulus of cured silane‐modified MWCNT (0.8 wt %)/epoxy composites increased 52%. Flexural strength of cured silane‐modified MWCNT (1.0 wt %)/epoxy composites increased 145% comparing to neat epoxy. Flexural modulus of cured silane‐modified MWCNT (0.8 wt %)/epoxy composites increased 31%. Surface and volume electrical resistance of MWCNT/epoxy composites were decreased with IPTES‐MWCNT content by 2 orders and 6 orders of magnitude, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
This paper presents the results of research undertaken to determine the possibility of improving the fatigue properties of peel-loaded adhesive joints by dispersing multiwall carbon nanotubes (MWCNTs) into epoxy-based adhesives. The fatigue strength tests were carried out on an electromagnetic inductor with the resonance frequency of the adhesively bonded joint specimen. The tests were conducted for three types of epoxy adhesives whose properties were modified through the introduction of multiwalled carbon nanotubes, into their structure. Carbon nanotubes were synthesized by means of the Chemical Vapour Deposition (CVD) method with Fe-Co catalysts. A quantity of 1 wt.% of the dried material was dispersed into the epoxy adhesives. The results of the fatigue strength tests revealed a significant improvement of the fatigue lifetime of adhesive joints due to MWCNT introduction as filler for epoxy adhesives. In the case of the Epidian 57/PAC adhesive composition, a more than twofold increase in the fatigue lifetime was obtained (an increase of 106.8%). For the Bison Epoxy adhesive composition, the fatigue lifetime increased by 69.3%. The fatigue strength for the best result increased by about 13%.  相似文献   

12.
This article reports a study on the effect of TiO2 nanoparticles on the adhesion strength of steel–glass/epoxy composite joints bonded with two-part structural acrylic adhesives. The introduction of nano-TiO2 in the two-part acrylic adhesive led to a remarkable enhancement in the shear and tensile strength of the composite joints. The shear and tensile strengths of the adhesive joints increased with adding the filler content up to 3 wt.%, after which it decreased with adding more filler content. Also, addition of nanoparticles caused a reduction in the peel strength of the joints. Differential scanning calorimeter analysis revealed that glass transition temperature (Tg) values of the adhesives rose with increasing the nano-filler content. The equilibrium water contact angle decreased for adhesives containing nanoparticles. Scanning electron microscope micrographs revealed that addition of nanoparticles altered the fracture morphology from smooth to rough fracture surfaces.  相似文献   

13.
This study investigates the effect of the thiol‐ene click reaction on thermal conductivity and shear strength of the epoxy composites reinforced by various silane‐functionalized hybrids of sulfhydryl‐grafted multi‐walled carbon nanotubes (SH‐MWCNTs) and vinyl‐grafted MWCNTs (CC‐MWCNTs). The results of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM) show that the sulfhydryl groups and vinyl groups are successfully grafted onto the surface of MWCNTs, after treatment of MWCNT with triethoxyvinylsilane and 3‐mercaptopropyltrimethoxysilane, respectively. Scanning electron microscopy (SEM), HotDisk thermal constant analyzer (HotDisk), optical microscope, and differential scanning calorimetry (DSC) are used to characterize the resultant composites. It is demonstrated that the hybrid of 75 wt % SH‐MWCNTs and 25 wt % CC‐MWCNTs has better dispersion and stability in epoxy matrix, and shows a stronger synergistic effect in improving the thermal conductivity of epoxy composite via the thiol‐ene click reaction with 2,2′‐azobis(2‐methylpropionitrile) as thermal initiator. Furthermore, the tensile shear strength results of MWCNT/epoxy composites and the optical microscopy photographs of shear failure section indicate that the composite with the hybrid MWCNTs has higher shear strength than that with raw MWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44579.  相似文献   

14.
ABSTRACT

Epoxy-based systems serve as excellent adhesives to join a wide range of substrates such as metal, ceramics, plastics, etc. The mechanical properties of such systems can be improved considerably by the addition of filler to the epoxy matrix. Herein, polymethylsilsesquioxane (PMS) and poly(methyl/vinyl)silsesquioxane (PMVS) nanosphere were synthesised by hydrolytic condensation of oraganosilane as a precursor in aqueous phase. The epoxy nanocomposite adhesives were prepared by adding different weight percentages (1–4 wt%) of the PS nanospheres. Tensile and compressive strength of the adhesive formulations were studied using the universal testing machine (UTM) and it was observed that the mechanical properties of the composites showed an increasing trend on increasing the filler loading. Adhesive strength of the epoxy composites on mild steel substrate was studied by conducting the lap shear test and EPV-4 exhibited a 31% increase in adhesive strength on the mild steel compared to the neat epoxy. Surface morphology of the epoxy composites were visualised from the SEM images and the composites also showed enhanced thermal conductivity. Higher mechanical and adhesive strength indicates the potential of the prepared nanocomposites to be used as an effective formulation in adhesive-based systems.  相似文献   

15.
Graphene platelets (electrically conductive 2D filler) and rubber nanoparticles (0D soft filler) can work together to develop electrically conductive and toughened epoxy composite adhesives. In this study, complementing effect between graphene platelets (GnPs) and rubber nanoparticles (RnPs) within an epoxy matrix is reported. In the 3-phase composite adhesive, the 2D graphene platelets form global conductive network and rubber nanoparticles provide a viscoelastic phase inside the epoxy, both complementing each other to develop electrically conductive and toughened epoxy composite adhesives. Fracture toughness (K1c) and critical strain energy release rate (G1c) of the epoxy were augmented by 422% and 872%, respectively by adding 1 wt% RnPs and it recorded electrical percolation threshold at 0.78 vol% GnP. Also, the Young's modulus and strength of epoxy/1 wt% RnP composite were promoted from 1.57 to 2.32 GPa when 1 wt% GnP is added. Scanning electron microscopy analysis was conducted to investigate the toughening mechanism of epoxy/RnP/GnP and epoxy/GnP composites. Lap shear strength tests on epoxy composite adhesives confirm the reinforcement effect of GnPs and toughness effect of RnPs.  相似文献   

16.
The adhesive properties have been investigated in blends of mono‐carboxyl‐terminated poly(2‐ethylhexyl acrylate‐co‐methyl methacrylate) with diglycidyl ether of bisphenol A and three different aliphatic amine epoxy hardener. The adhesives properties are evaluated in steel alloy substrate using single‐lap shear test. The copolymers are initially miscible in the stoichiometric blends of epoxy resin and hardener at room temperature. Phase separation is noted in the course of the polymerization reaction. Different morphologies are obtained according to the amine epoxy hardener. The most effective adhesive for steel–steel joints in single‐lap shear test is the blends using 1‐(2‐aminoethyl)piperazine (AEP) as hardener. This system shows the biggest lap shear strength. However, the modified adhesives show a reduction in the mechanical resistance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Epoxy resins reinforced with carbon nanofibers (CNF) and nanotubes (CNT) were prepared and evaluated as adhesives of carbon fiber/epoxy laminates. Different percentages of nanofiller (0.1–3 wt%) have been tested. The viscosity of the non-cured nanoreinforced epoxy mixtures increased with the nanofiller content. On the other hand, the thermal treatment at high temperatures of the mixtures of amino-functionalized CNTs and epoxy monomer also caused an increase of their viscosity — this is likely due to the chemical reaction between the oxirane groups of the epoxy and the amine groups of the nanofiller. The joint strength of the carbon fiber/epoxy laminates bonded with nanoreinforced epoxy adhesives was analyzed by means of the single lap shear test. The shear strength of these joints was similar to that of the one made with unfilled epoxy resin. However, observation by Scanning Electron Microscopy of the fracture surfaces of the adhesive joints confirmed that the incorporation of carbon nanofillers caused the cohesive fractures inside the laminates (light-fiber tear failure). The electrical conductivity was drastically increased by the addition of nanofillers, especially CNTs.  相似文献   

18.
We investigated the influence of carbon materials on the properties of adhesives. With the aim of the development of conductive and mechanically improved adhesives, different types of multi-walled carbon nanotubes (MWNT), single-layer graphene, graphene nanoplatelets, graphite, and carbon black were dispersed into an epoxy adhesive. For inserting particles within the viscous matrices and to obtain homogenous and stable dispersions, two different methods namely a three-roll mill and a dual asymmetric centrifuge have been compared The results demonstrate that filling epoxies with carbon nanoparticles improves the conductivity differently. Measuring the electrical resistivity of MWNT-filled composites resulted in an electrical percolation starting underneath 0.1 wt.%. Further, with increasing the MWNT content, conductivity sharply increases. In contrast to the MWNT composites, other carbon nanoparticles require a higher filling content to reach similar values. With a filling ratio up to 17.0 wt.% for ACS graphene nanoplatelets 2–10 nm and the filling of 3.0 wt.% with MWNTs from Nanocyl, the lowest volume resistivities have been reached.  相似文献   

19.
The combined effects of heat (50[ddot]C) and humidity (95% R.H.) on the lap shear and T-peel strengths of 120[ddot]C, 150[ddot]C and 215[ddot]C service epoxy film adhesives have been characterized. Experimental results have indicated that effects of hygrothermal conditioning on lap shear and peel properties vary with exposure time and final testing temperatures and type of adhesive tested. In the cases where cohesive failure was observed in the shear and peel specimens, a correlation could be established between the bulk properties of the adhesives (tensile strength and elongation) and their adhesively bonded joint properties (shear and peel). When testing was carried out at room temperature, a general correlation between the tensile elongation and T-peel or shear could be obtained. At below freezing temperatures, lap shear strength seemed to be correlated with bulk tensile strength while peel correlated with bulk tensile elongation. At elevated temperatures, the relative contributions of bulk strength and elongation were the decisive factors as far as shear and peel strengths are concerned.  相似文献   

20.
The mechanical and adhesives properties of epoxy formulations based on diglycidyl ether of bisphenol A cured with various aliphatic amines were evaluated in the glass state. Impact tests were used to determine the impact energy. The adhesive properties have been evaluated in terms single lap shear using steel adherends. Its durability in water at ambient temperature (24 °C) and at 80 °C has also been analyzed. The fracture mechanisms were determined by optical microscopy. It was observed a strong participation of the cohesive fracture mechanisms in all epoxy system studied. The 1-(2-aminoethyl)piperazine epoxy adhesive and piperidine epoxy adhesive presents the best adhesive strength and the largest impact energy. The durability in water causes less damage to piperidine epoxy networks. This behavior appears to be associated with the lower water uptake tendency of homopolymerised resins due to its lower hydroxyl group concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号