首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study was conducted on the strength of adhesively bonded steel joints, prepared epoxy and acrylic adhesives. At first, to obtain strength characteristics of these adhesives under uniform stress distributions in the adhesive layer, tensile tests for butt, scarf and torsional test for butt joints with thin-wall tube were conducted. Based on the above strength data, the fracture envelope in the normal stress-shear stress plane for the acrylic adhesive was compared with that for the epoxy adhesive. Furthermore, for the epoxy and acrylic adhesives, the effect of stress triaxiality parameter on the failure stress was also investigated. From those comparison, it was found that the effect of stress tri-axiality in the adhesive layer on the joint strength with the epoxy adhesive differed from that with the acrylic adhesive. Fracture toughness tests were then conducted under mode l loading using double cantilever beam (DCB) specimens with the epoxy and acrylic adhesives. The results of the fracture toughness tests revealed continuous crack propagation for the acrylic adhesive, whereas stick-slip type propagation for the epoxy one. Finally, lap shear tests were conducted using lap joints bonded by the epoxy and acrylic adhesives with several lap lengths. The results of the lap shear tests indicated that the shear strength with the epoxy adhesive rapidly decreases with increasing lap length, whereas the shear strength with the acrylic adhesive decreases gently with increasing the lap length.  相似文献   

2.
Lap joints are used extensively in the manufacture of cars. In order to determine the effect of using a structural adhesive instead of spot-welding, a detailed series of tests and finite element analyses were conducted using a range of loadings. The adhesive was a toughened epoxy and the adherend was mild steel typical of that used in the manufacture of car bodyshells. The lap joints were tested in tension (which creates shear across the bondline), four-point loading (pure bending) and three-point loading (bending plus shear). Various parameters were investigated such as the overlap length, the bondline thickness and the spew fillet. The major finding is that three-point bending and tension loading are very similar in the way in which they affect the adhesive while the four-point bend test does not cause failure because the steel yields before the joint fails. A failure criterion has been proposed based on the tensile load and bending moment applied to the joint.  相似文献   

3.
The T-peel joint is commonly used in the automotive industry, especially in the panels of the load compartment in vans. In order to determine the effect of using a structural adhesive instead of spot-welding, a detailed series of tests and finite element analyses were conducted. The adhesive was a toughened epoxy and the adherend was mild steel used in the manufacture of the car bodyshell. Various parameters were investigated such as the bondline thickness and adherend radius. The spew fillet was maintained flush in all cases. Contrary to the case of lap joints, there are no stress concentrations around the fillet area and, therefore, it is possible to use the maximum uniaxial tensile stress as a failure criterion for these joints. The bending moment at failure was found to be constant across the different geometries modelled, and it was also similar to that found in lap shear joints in previous studies.  相似文献   

4.
Although carbon fiber epoxy composite materials have excellent properties for structures, the joint in composite materials often reduces the efficiency of the composite structure because the joint is often the weakest area in the composite structure.

In this paper, the effects of the adhesive thickness and the adherend surface roughness on the static and fatigue strengths of adhesively-bonded tubular polygonal lap joints have been investigated by experimental methods. The dependencies of the static and fatigue strengths on the stacking sequences of the composite adherends were observed.

From the experimental investigations, it was found that the fatigue strength of the circular adhesively-bounded joints was quite dependent on the surface roughness of the adherends and that polygonal adhesively-bonded joints had better fatigue strength characteristics than circular adhesively-bonded joints.  相似文献   

5.
Although carbon fiber epoxy composite materials have excellent properties for structures, the joint in composite materials often reduces the efficiency of the composite structure because the joint is often the weakest area in the composite structure.

In this paper, the effects of the adhesive thickness and the adherend surface roughness on the static and fatigue strengths of adhesively-bonded tubular polygonal lap joints have been investigated by experimental methods. The dependencies of the static and fatigue strengths on the stacking sequences of the composite adherends were observed.

From the experimental investigations, it was found that the fatigue strength of the circular adhesively-bounded joints was quite dependent on the surface roughness of the adherends and that polygonal adhesively-bonded joints had better fatigue strength characteristics than circular adhesively-bonded joints.  相似文献   

6.
In this study, the shear strengths of Al 7075–HSS adhesive bonded, grooved and smooth plates were investigated. The proven toughness and durability of adhesives have drawn the attention of researchers who want to take advantage of the technology to benefit the development of ballistic resistance sandwich panels. However, the strength of the panel depends on the design of surface topography. Therefore, it is essential to understand the fracture upon loading parallel to the plane of the adhesive bonded metal plates. In this experiment, toughened epoxy was used to bond dissimilar metal plates at 1 mm thickness. The shear tests were performed with a universal-testing machine to identify the maximum fracture loads. The results showed that a shear lap joint specimen with a grooved surface yields a higher strength than a smooth specimen. From the fracture behaviour of all specimens, interfacial failure with some degree of cohesive failure was observed. This indicates that the strength of the adhesive-bonded metal plate driven by a mechanical interlocking effect and mode of failure for thick bondline was the result of interfacial strength rather than adhesive bulk strength. Shear value results and fractography for 1 mm bond thickness provide insights towards steel fibre application in epoxy.  相似文献   

7.
The main aim of this article is to investigate the effect of frequency on fatigue crack propagation in adhesively bonded joints. Adhesively bonded double-cantilever beam (DCB) samples were tested in fatigue at various frequencies between 0.1 and 10 Hz. The adhesive used was a toughened epoxy, and the substrates used were a carbon fibre-reinforced polymer (CFRP) and mild steel. Results showed that the crack growth per cycle increases and the fatigue threshold decreases as the test frequency decreases. The locus of failure with the CFRP adherends was predominantly in the adhesive layer, whereas the locus of failure with the steel adherends was in the interfacial region between the steel and the adhesive. The crack growth was faster, for a given strain energy release rate, and the fatigue thresholds lower for the samples with steel adherends. Tests with variable frequency loading were also carried out, and a generalised method of predicting crack growth in samples subjected to a variable frequency loading was introduced. The predicted crack growth using this method agreed well with experimental results.  相似文献   

8.
Since the surface roughness of adherends greatly affects the strength of adhesively bonded joints, the effect of surface roughness on the fatigue life of adhesively bonded tubular single lap joints was investigated analytically and experimentally by a fatigue torsion test. The stiffness of the interfacial layer between the adherends and the adhesive was modelled as a normal statistical distribution function of the surface roughness of the adherends. From the investigation, it was found that the optimum surface roughness of the adherends for the fatigue strength of tubular single lap joints was dependent on the bond thickness and applied load.  相似文献   

9.
《The Journal of Adhesion》2013,89(12):1161-1182

The main aim of this article is to investigate the effect of frequency on fatigue crack propagation in adhesively bonded joints. Adhesively bonded double-cantilever beam (DCB) samples were tested in fatigue at various frequencies between 0.1 and 10 Hz. The adhesive used was a toughened epoxy, and the substrates used were a carbon fibre-reinforced polymer (CFRP) and mild steel. Results showed that the crack growth per cycle increases and the fatigue threshold decreases as the test frequency decreases. The locus of failure with the CFRP adherends was predominantly in the adhesive layer, whereas the locus of failure with the steel adherends was in the interfacial region between the steel and the adhesive. The crack growth was faster, for a given strain energy release rate, and the fatigue thresholds lower for the samples with steel adherends. Tests with variable frequency loading were also carried out, and a generalised method of predicting crack growth in samples subjected to a variable frequency loading was introduced. The predicted crack growth using this method agreed well with experimental results.  相似文献   

10.
Rubber-modified epoxy adhesives are used widely as structural adhesive owing to their properties of high fracture toughness. In many cases, these adhesively bonded joints are exposed to cyclic loading. Generally, the rubber modification decreases the static and fatigue strength of bulk adhesive without flaw. Hence, it is necessary to investigate the effect of rubber-modification on the fatigue strength of adhesively bonded joints, where industrial adhesively bonded joints usually have combined stress condition of normal and shear stresses in the adhesive layer. Therefore, it is necessary to investigate the effect of rubber-modification on the fatigue strength under combined cyclic stress conditions. Adhesively bonded butt and scarf joints provide considerably uniform normal and shear stresses in the adhesive layer except in the vicinity of the free end, where normal to shear stress ratio of these joints can cover the stress combination ratio in the adhesive layers of most adhesively bonded joints in industrial applications.

In this study, to investigate the effect of rubber modification on fatigue strength with various combined stress conditions in the adhesive layers, fatigue tests were conducted for adhesively bonded butt and scarf joints bonded with rubber modified and unmodified epoxy adhesives, wherein damage evolution in the adhesive layer was evaluated by monitoring strain the adhesive layer and the stress triaxiality parameter was used for evaluating combined stress conditions in the adhesive layer. The main experimental results are as follows: S–N characteristics of these joints showed that the maximum principal stress at the endurance limit indicated nearly constant values independent of combined stress conditions, furthermore the maximum principal stress at the endurance limit for the unmodified adhesive were nearly equal to that for the rubber modified adhesive. From the damage evolution behavior, it was observed that the initiation of the damage evolution shifted to early stage of the fatigue life with decreasing stress triaxiality in the adhesive layer, and the rubber modification accelerated the damage evolution under low stress triaxiality conditions in the adhesive layer.  相似文献   

11.
In this study, stress and stiffness analyses of adhesively bonded tee joints with a single support plus angled reinforcement were carried out using the finite element method. It was assumed that the adhesive had linear elastic properties. In actual bonded joints, some amount of adhesive, called the spew fillet, accumulated at the free ends of the adhesive layer; therefore, the presence of the adhesive fillet at the adhesive free ends was taken into account. The tee joints were analysed for two boundary conditions: a rigid base and a flexible base. In addition, each boundary condition was analysed for four loading conditions: tensile, compressive, and two side loadings. The stress analysis showed that both side loading conditions resulted in higher stress levels in the joint region in which the vertical plate and supports are bonded to each other, as well as in the adhesive layer in this region for both rigid and flexible base boundary conditions. In adhesively bonded joints, the joint failure is expected to initiate in the adhesive regions subjected to high stress concentrations; therefore, the peak adhesive stresses were evaluated in these critical regions. In the case of the rigid base, the peak adhesive stresses occurred at the corner of the vertical plate, which was bent at right angles, for the tensile and compressive loading conditions, and in the adhesive fillet at the upper free end of the vertical adhesive layer-vertical support interface for both the left and the right side loading conditions. However, in case of the flexible base, the peak adhesive stresses occurred in the adhesive fillet at the right free end of the horizontal adhesive layer-horizontal support interface for the tensile, compressive, and the right side loading conditions, and in the vertical adhesive fillet at the upper free end of the vertical adhesive layer-vertical support interface for the left side loading condition. Furthermore, the adhesive stresses showed a nonlinear variation in the direction of the adhesive thickness for all boundary and loading conditions. The left side loading condition, among the present loading conditions, which results in the highest adhesive stresses is the most critical loading condition for both boundary conditions. The effects of horizontal and vertical support lengths on the peak adhesive stresses and on the joint stiffness were also investigated and the appropriate support dimensions relative to the plate thickness were determined based on the stress and stiffness analyses.  相似文献   

12.
This paper outlines an experimental study on the shear behaviour of structural silicone adhesively bonded steel-glass orthogonal lap joints. In the combination of steel plate and glass panel to form a hybrid structural glazing system, bonded joints with structural silicones can provide certain flexibility which relieves stress peaks at critical points of glass panel. The cohesive failure and its related fracture pattern of test joints with varied geometries of adhesives are examined experimentally. It is shown that the presence of two failure modes as discrete voids and macro cracks is closely related to the adhesive thickness. The effects of geometric parameters of adhesives on the joint shear strength are examined. It is demonstrated that the joint shear strengths are increased with increased individual overlap length, reduced adhesive thickness or increased adhesive width while the shear deformation corresponding to maximum shear force is mostly influenced by adhesive thickness. Mechanical contributions for those effects are analyzed accordingly. Finally, an analytical formula allowing for the equilibrium of strain and force on the adhesive and adherend is proposed for the analysis of shear strength. It is demonstrated that calculated normalized shear force ratios predicted by proposed formula agree well with those from experimental results.  相似文献   

13.
Fatigue and corrosion damage are the major concerns of automotive adhesive joints, yet literature reports few works about the in situ fatigue durability of adhesive joints in corrosive environment. This study presents an investigation on the fatigue durability of automotive adhesive single lap joints by an in situ corrosion fatigue test. The joints were manufactured with commercial coated AA5754-O aluminum sheets bonded by a toughened epoxy structural adhesive. An in situ corrosion chamber was designed and employed to simulate a humid and corrosive environment by spraying 5% saline solution or distilled water mist around the joints’ overlap area during fatigue testing. The test results show that in the 5% saline solution mist environment, the joints’ fatigue lives encountered a great loss for about an order in magnitude compared to the joints tested in laboratory environment. The difference of fatigue lives between 5% saline solution mist test and distilled water mist test is insignificant. The fracture surface analysis by scanning electron microscope and EDX techniques indicates that the adhesive joints failed interfacially in the corrosive environment, which differs from the cohesive failure mode in the laboratory environment.  相似文献   

14.
In order to improve the tensile lap shear strength of adhesively bonded joints, nano-particles were dispersed in the adhesive using a 3-roll mill. The dispersion states of nano-particles in the epoxy adhesive were observed with TEM (Transmission Electron Microscopy) with respect to the mixing conditions, and the effect of nano-particles on the mechanical properties of the adhesive was measured with respect to dispersion state and weight content of nano-particles. Also the static tensile load capability of the adhesively bonded double lap joints composed of uni-directional glass/epoxy composite and nano-particle-reinforced epoxy adhesive was investigated to assess the effect of nano-particles on the lap shear strength of the joint. From the experimental and FE analysis results, it was found that the nano-particles in the adhesive improved the mechanical properties of the adhesive. Also the increased failure strain and the reduced CTE (coefficient of thermal expansion) of the nano-particle-reinforced adhesive improved the lap shear strength of adhesively bonded joints.  相似文献   

15.
In the present work, the fatigue behavior of tongue and groove joints bonded by a toughened epoxy adhesive was investigated. Axial cyclic tests were performed by different design configuration conditions and the effects of design parameters were evaluated. The bonding strength of adhesives under fatigue loading is influenced by many factors such as, the length of bondline, adhesive thickness, traverse pre-stress on near the free edges of bond line and material of the joining parts. Since all these factors affect the fatigue strength of the adhesively joined parts, the effects of these parameters need to be investigated. The present paper describes the use of the stochastic search process that is the basis of a Genetic Algorithm, in developing fatigue strength estimation of adhesively bonded thick woven E-glass/vinyl ester laminates. Non-linear estimation models were developed using genetic algorithm. Developed models are validated with experimental data. Genetic Algorithm Fatigue Strength Estimation Model for Tongue and Groove Joints was developed to estimate the fatigue strength of the adhesively bonded joint. The strongest adhesively bonded joints can be achieved by selecting optimum design parameters obtained from the models. The logarithmic number of cycles was increased 2.46 times by selecting aluminum EN AW 5083 insert instead of composite insert materials. The joint fatigue strength was significantly improved by selecting appropriate design parameter values.  相似文献   

16.
A research study on the fatigue behaviour of aluminium alloy adhesive lap joints was carried out to understand the effect of surface pre-treatment and adherends thickness on the fatigue strength of adhesive joints. The adherend material used for the experimental tests was an aluminium alloy 6082-T6 in the form of thin sheets, and the adhesive used was a high strength epoxy (Araldite 420 A/B). The surface preparation included an abrasive preparation (AP joints) and sodium dichromate–sulphuric acid etch (CSA joints).A maximum fatigue strength was obtained for the CSA surface treatment with a 1.0 mm adherends’ thickness. The fastest fatigue damage was related with a high surface roughness and a high stress perpendicular to adhesive surface, which helps to promote the adhesive failure. A numerical analysis was also performed to understand the effect of the adherends thickness on the stress level. Results showed an increase of the out-of-plane peak stresses with the increase of adherends thickness.  相似文献   

17.
This paper presents an experimental investigation into various aspects of epoxy-bonded polymethylmethacrylate (PMMA) and PMMA-to-aluminium joints. The effects of adhesive thickness, overlap area, surface roughness, and environmental exposure on the joint strength were studied. Results indicated that the joint strength was not directly proportional to the overlap area, while sanding had a positive effect on the joint strength. A negative effect was observed when adhesive thickness was increased. The fatigue behaviour of adhesively-bonded joints under dynamic loading was found to be independent of frequency, for the range of values tested; however, it was dependent on the test temperature with greater reduction in fatigue life observed in PMMA-to-aluminium joints at higher temperature. Empirical equations from which the fatigue life of joints can be predicted were obtained by regression analysis. Intermittent fatigue testing of the joints was also performed. The epoxy adhesive tested proved to be a satisfactory choice for outdoor exposure. The rate of degradation of the adhesive was slow with the adherend itself degrading at a faster rate than the adhesive or the bondline.  相似文献   

18.
This paper presents an experimental investigation into various aspects of epoxy-bonded polymethylmethacrylate (PMMA) and PMMA-to-aluminium joints. The effects of adhesive thickness, overlap area, surface roughness, and environmental exposure on the joint strength were studied. Results indicated that the joint strength was not directly proportional to the overlap area, while sanding had a positive effect on the joint strength. A negative effect was observed when adhesive thickness was increased. The fatigue behaviour of adhesively-bonded joints under dynamic loading was found to be independent of frequency, for the range of values tested; however, it was dependent on the test temperature with greater reduction in fatigue life observed in PMMA-to-aluminium joints at higher temperature. Empirical equations from which the fatigue life of joints can be predicted were obtained by regression analysis. Intermittent fatigue testing of the joints was also performed. The epoxy adhesive tested proved to be a satisfactory choice for outdoor exposure. The rate of degradation of the adhesive was slow with the adherend itself degrading at a faster rate than the adhesive or the bondline.  相似文献   

19.
The present work describes an experimental study about the shear strength and the mode I fracture toughness of adhesive joints with substrates pre-treated by pulsed laser ablation. An ytterbium-doped pulsed fiber laser was employed to perform laser irradiation on AA6082-T4 alloy. Morphological and chemical modifications were evaluated by means of surface profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Thick adherend shear tests were carried out in order to assess the shear strength while the mode I fracture toughness was determined using the double cantilever beam. For comparison, control samples were prepared using classical surface degreasing. The results indicated that laser ablation has a favorable effect on the mechanical behavior of epoxy bonded joints; however, while a + 20% increase was recorded for shear strength, a remarkable threefold enhancement of fracture toughness was observed with respect to control samples. XPS analyses of treated substrates and SEM observations of the fracture surfaces indicated that laser pre-treatment promoted chemical and morphological modifications able to sustain energy dissipation through mechanical interlocking. As a result cohesive failure within the adhesive bond-line was enabled under predominant peel loading.  相似文献   

20.
Even the most recent closed form analyses of single lap joints assume that the adhesive terminates in a square end. In practice a fillet of adhesive (hereafter called the spew) usually forms at the overlap ends. This spew can considerably reduce peak adhesive stresses and so strengthen the joint. An investigation has been made into the role of the spew for a wide range of joint parameters. The stress distribution across the adhesive thickness was also considered, and was found to be essentially uniform over a large part of the overlap length. However, near the overlap end, the stress variation across the thickness can be high, resulting in higher stresses and so lower strengths than would be expected considering average stress levels in the joint, but even after including the effect of this variation the maximum adhesive stresses have usually been found to be considerably lower than corresponding peak values predicted by closed form analysis of square ended joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号