首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碳纤维结构吸波材料及其吸波碳纤维的制备   总被引:19,自引:0,他引:19  
碳纤维结构吸波材料是一类多功能复合材料,具有承载和减小雷达反射截面的双重功能,是一种非常有发展前途的吸波材料。碳纤维结构吸波材料以其优异的力学性能和隐身特性已大量应用于隐身技术。本文讨论了碳纤维结构吸波的应用,碳纤维结构吸波材料的类型及其结构型式设计,探讨了吸波波对碳纤维进行掺杂改性,制备出吸波性能优良的碳纤维、改变碳纤维的截面形状和大小,对碳纤维进行表面改性以及对碳纤维进行掺杂改性,制备出吸波性  相似文献   

2.
A MnO2/carbon nanotube (CNT) nanocomposite was synthesised using a simple hydrothermal treatment. The nanocomposite exhibits a CNT core/MnO2 porous sheath hierarchy architecture, which makes it promising as an electrode material for supercapacitors. An asymmetric supercapacitor based on activated carbon (AC) as anode, MnO2/CNT nanocomposite as cathode and 1M Na2SO4 solution as electrolyte was assembled in a Swagelok cell. The full cell exhibits excellent power capability, cycling stability and a high energy density of 23 W h/kg at a power density of 330 W/kg based on the total mass of the active electrode materials. This AC//MnO2/CNT asymmetric supercapacitor is promising for high-power applications due to its high energy density and power density.  相似文献   

3.
碳纳米管/聚合物复合吸波材料性能研究   总被引:11,自引:1,他引:11  
孙晓刚 《塑料》2004,33(5):66-69
碳纳米管通过化学气相沉积工艺制备,碳纳米管直径10~30nm,纯度>90%。碳源为乙炔、铁/镍复合催化剂。加入适量的有机溶剂丙酮溶解环氧树脂,然后加入碳纳米管。分别高速搅拌和超声处理30min,加入固化剂乙二胺搅拌均匀,超声10min除去气体后,浇铸在铝板上制成吸波涂层。TEM检测碳纳米管。反射率扫频测量系统HP8757E标量网络分析仪检测吸波性能。碳纳米管和环氧树脂比例为1∶100时,3mm厚吸波层试样吸波峰出现在14 32GHz,吸波峰值R=-10 01dB,吸波频带宽度为2 16GHz(R<8dB)。厚度增加到9mm,在11GHz和17 83GHz出现双吸波峰,最大吸波峰出现在17 83GHz峰值R=-9 04dB,带宽约1GHz(R<8dB)。比例调整为5∶100时,波峰出现在7 91GHz,峰值加大到R=-13 89dB,带宽度达到3 19GHz(R<8dB)。  相似文献   

4.
Asif Rasheed  Satish Kumar 《Polymer》2006,47(13):4734-4741
Polymer nanocomposite films containing 5 wt% single-walled carbon nanotubes (SWNT) or 5 wt% multi-walled carbon nanotubes (MWNT) with random copolymers of styrene and vinyl phenol were processed from dimethyl formamide solutions. Vinyl phenol mole ratio in the copolymer was 0, 10, 20, 30, and 40%. FTIR analysis indicates that the composites containing the copolymer with 20% vinyl phenol exhibit the maximum intermolecular interactions (hydrogen bonding) between the hydroxyl group of the vinyl phenol and the carbon nanotube functional groups. Tensile properties and electrical conductivity also are the highest in the samples containing the copolymer with 20% vinyl phenol. Thus, these results show that the optimization of the extent of intermolecular interactions between a polymer chain and a carbon nanotube results in an optimal increase in macroscopic properties. Moreover, the extent of intermolecular hydrogen bonding can be improved by optimizing the accessibility of the functional groups to participate in the non-covalent interaction. In this system, this optimization is realized by control of the amount of vinyl phenol in the copolymer, i.e. the copolymer composition.  相似文献   

5.
Polypyrrole/multi-walled carbon nanotube, poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube and their nanocomposites P(EDOT-co-Py)/multi-walled carbon nanotube and P(EDOT-co-Py)/copper (II) oxide, (CuO) in the initial feed ratio of [EDOT]0/[Py]0 = 1/5 were electrosynthesized on glassy carbon electrode by cyclic voltammetric method. Their characterizations were performed by cyclic voltammetric, Fourier transform infrared-attenuated total reflectance, scanning electron microscopy, energy dispersion X-ray analysis, and electrochemical impedance spectroscopy. To the best of authors’ knowledge, the first report on polypyrrole/multi-walled carbon nanotube, PEDOT/multi-walled carbon nanotube, P(EDOT-co-Py)/multi-walled carbon nanotube and P(EDOT-co-Py)/CuO nanocomposite films were comparatively examined in 0.1 M NaClO4/CH3CN and in 0.1 M sodium dodecyl sulfate solutions. The highest specific capacitance for PEDOT/multi-walled carbon nanotube and polypyrrole/multi-walled carbon nanotube composite films were obtained as Csp = 306 mF × cm?2 for 3% multi-walled carbon nanotube and Csp = 804 mF × cm?2 for 1% multi-walled carbon nanotube, respectively. The highest specific capacitances were obtained as Csp = 27.40 mF × cm?2 and Csp = 26.90 mF × cm?2 for P(EDOT-co-Py)/multi-walled carbon nanotube includes the wt percent of 1% multi-walled carbon nanotube and P(EDOT-co-Py)/CuO includes the wt percent of 3% CuO, respectively. The Csp of P(EDOT-co-Py)/CNT composite films were calculated as 9.43 and 11.49 mF × cm?2 for 3 and 5% multi-walled carbon nanotube, respectively. In addition, The EIS results were simulated with the equivalent circuit model of Rs(Cdl1(R1(QR2)))(Cdl2R3).  相似文献   

6.
《Ceramics International》2020,46(12):19655-19663
Unique optical, electrical and chemical properties make carbon nanotubes (CNTs) an excellent candidate for potential applications in the next-generation optoelectronics. Especially, the optoelectronic properties of CNTs can be enhanced dramatically by constructing heterostructures with other materials, in which the charge separation efficiency is enhanced and the recombination probability of excitons is suppressed significantly. Therefore, the CNT-based heterostructures have been widely used as active materials in high-performance photoelectronic devices. Herein, the recent progress of the CNT-based heterostructure photodetectors is reviewed. Firstly, the working mechanisms and typical figures-of-merits are introduced. Secondly, different type CNT-based heterostructures and related photodetectors are highlighted, such as van der Waals heterostructures, all-carbon heterostructures, and bulk heterostructures. Finally, we give the current challenges and future prospects for the development of this emerging field.  相似文献   

7.
以聚醚多元醇(N-210)、异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)、一缩二乙二醇(DEG)为基料,合成了水性聚氨酯预聚体,采用改性多壁碳纳米管( MWCNTs )的悬浊液为分散介质得到水性聚氨酯复合乳液。通过TEM、拉力机、TGA对其胶膜的微观结构、力学性能以及热学性能进行测试,结果表明: MWCNTs均匀分散在聚氨酯胶膜中;当MWCNTs质量分数在0.5%时,拉伸强度达到最大值为17.91 MPa,比纯聚氨酯提高了81%;复合材料的断裂伸长率均达到500%以上,最大达到539%,明显高于未加改性碳纳米管的聚氨酯; MWCNTs的加入可明显提高复合材料的耐热性。  相似文献   

8.
The processing-structure-property relationships of multiwalled carbon nanotubes (MWNTs)/epoxy nanocomposites processed with a magnetic field have been studied. Samples were prepared by dispersing the nanotube in the epoxy and curing under an applied magnetic field. The nanocomposite morphology was characterized with Raman spectroscopy and wide angle X-ray scattering, and correlated with thermo-mechanical properties. The modulus parallel to the alignment direction, as measured by dynamic mechanical analysis, showed significant anisotropy, with a 72% increase over the neat resin, and a 24% increase over the sample tested perpendicular to the alignment direction. A modest enhancement in the coefficient of thermal expansion (CTE) parallel to the alignment direction was also observed. These enhancements were achieved even though the nanotubes were not fully aligned, as determined by Raman spectroscopy. The partial nanotube alignment is attributed to resin a gel time that is faster than the nanotube orientation dynamics. Thermal conductivity results are also presented.  相似文献   

9.
The fabrication of carbon nanotube (CNT)-reinforced ceramic nanocomposites through laser sintering has been rarely studied, and the fabrication feasibility has been rarely tested. Laser sintering is a flexible, localized and high-precision process, which can also potentially produce coatings or parts with complicated shapes and/or spatially controlled compositions. Therefore, compared with other technologies laser sintering has its own advantages. Experimental investigations reported in this paper have confirmed the feasibility of fabricating CNT-reinforced ceramic nanocomposites through laser sintering of ceramic nanoparticles and CNTs. The studies show that laser sintering can induce the agglomeration of ceramic nanoparticles into a relatively more continuous ceramic phase, and during the sintering process CNTs are well preserved without any obvious quality degradation, and they are also bonded with the ceramic phase after laser sintering.  相似文献   

10.
Supercritical carbon dioxide was employed as the solvent for the functionalization of multi-walled carbon nanotubes (MWCNTs) with an epoxy-capped silane. The silanization protocol was found to be a suitable green alternative to traditional routes that rely on organic solvents for grafting nearly monolayers of silane molecules onto the nanotube surfaces. The addition of silanized MWCNTs to a model epoxy markedly increased its Tg, and measurements of the network cooperativity length scale linked this change to a reduction in polymer segment mobility. Composites filled with low loading levels of both pristine and silanized MWCNTs exhibited significantly higher strain at break and toughness than the neat epoxy, and the greatest improvements were observed at low loading levels. SEM analysis of the composite fracture surfaces revealed that nanotube pullout was the primary failure mechanism in epoxy loaded with pristine MWCNTs while crack bridging predominated in composites containing silanized MWCNTs as the result of strong interfacial bonding with the matrix. The elevated Tg and toughness achieved with small additions of silanized MWCNTs promise to extend the engineering applications of the epoxy resin.  相似文献   

11.
The effect of carboxyl and fluorine modified multi-wall carbon nanotubes (MWCNTs) on the curing behavior of diglycidyl ether of bisphenol A (DGEBA) epoxy resin was studied using differential scanning calorimetry (DSC), rheology and infrared spectroscopy (IR). Activation energy (Ea) and rate constants (k) obtained from isothermal DSC were the same for the neat resin and fluorinated MWCNT system (47.7 and 47.5 kJ/mol, respectively) whereas samples containing carboxylated MWCNTs exhibited a higher activation energy (61.7 kJ/mol) and lower rate constant. Comparison of the activation energies, rate constants, gelation behavior and vitrification times for all of the samples suggests that the cure mechanisms of the neat resin and fluorinated sample are similar but different from the carboxylated sample. This can be explained by the difference in how the fluorinated nanotubes react with the epoxy resin compared to the carboxylated nanotubes. Although the two systems have different reaction mechanisms, both systems have similar degrees of conversion as calculated from the infrared spectroscopic data, glass transition temperature (Tg), and predictions based on DSC data. This difference in reaction mechanism may be attributed to differences in nanotube dispersion; the fluorinated MWCNT system is more uniformly dispersed in the matrix whereas the more heterogeneously dispersed carboxylated MWCNTs can hinder mobility of the reactive species and disrupt the reaction stoichiometry on the local scale.  相似文献   

12.
用原位合成法成功制备出多壁碳纳米管/羟基磷灰石[multi-walled carbon nanotube(MWNT)/hydroxyapatite(HA)]复合材料,并对其进行了多种检测.红外分析结果显示:经过浓硝酸回流处理后,MWNT表面产生大量阴离子官能团,这是后期HA形核长大的基础.X射线衍射结果表明:适当的pH值是合成HA的关键因素.透射电镜照片显示:pH值为10时,HA在MWNT表面形核结晶;HA颗粒的尺寸与陈化温度成正比.  相似文献   

13.
以碳纳米管(CNTs)为基体材料,用浓硝酸回流处理碳纳米管,TEM(透射电子显微镜)研究表明碳纳米管的端帽被部分打开,通过液相反应对碳纳米管进行表面改性,制备CNTs/Mo复合电极材料,复合电极使电解液和导电材料的接触面积增大,使电极反应的有效表面积增大,反应场所有所增加,从而提高电极电化学反应的活性。基于此复合材料的超电容器具有高比电容、高稳定性、良好的可逆性和长寿命等特点。循环伏安结果表明:CNTs/Mo复合电极的比电容比纯CNTs电极要高出20%。  相似文献   

14.
A new technique to show good electroconductivity was proposed using carbon nanotube (CNT) localization in cocontinuous immiscible polymer blends comprising ultrahigh-molecular-weight polyethylene (UHMWPE) and polycarbonate (PC). When UHMWPE was added to PC/CNT in the molten state in an internal mixer, CNTs started moving to the UHMWPE phase. However, CNTs require a long time to diffuse into the UHMWPE phase owing to a low diffusion constant. Consequently, they remain at the interface between PC and UHMWPE. When the blends have cocontinuous structure, the localized CNTs at the phase boundary act as a conductive path, leading to a good electroconductivity. Although a similar morphology is obtained by adjusting the balance of interfacial tensions among polymers and CNT, it is difficult to find a system showing appropriate interfacial tensions. As the present method is applicable to various polymer blends, it will be an important technique to prepare a conductive nanocomposite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48676.  相似文献   

15.
High power density electrodes for Carbon supercapacitor applications   总被引:3,自引:0,他引:3  
This paper presents results obtained with 4 cm2 Carbon/Carbon supercapacitors cells in organic electrolyte. In the first approach, a surface treatment for Al current collector foil via the sol-gel route has been used in order to decrease the Al/active material interface resistance. Performances obtained with this original process are: a low equivalent series resistance (ESR) of 0.5 Ω cm2 and a specific capacitance of 95 F g−1 of activated carbon.Then, supercapacitors assembled with treated Al foil and active material containing activated carbon/carbon nanotubes (CNTs) with different compositions have been studied. Galvanostatic cycling measurements show that when CNTs content increases, both ESR and specific capacitance are decreased. Fifteen percent appears to be a good compromise between stored energy and delivered power with an ESR of 0.4 Ω cm2 and a specific capacitance of 93 F g−1 of carbonaceous active material.Finally, cells frequency behaviour has been characterized by Electrochemical Impedance Spectroscopy. The relaxation time constant of cells decreases when the CNTs content increases. For 15% of CNTs, the time constant is about 30% lower as compared to a cell using pure activated carbon-based electrodes leading to a higher delivered power.  相似文献   

16.
Carbon nanotube (CNT) agglomeration exists inevitably in all CNT-polymer composites. This paper quantified the effect of CNT agglomeration on the piezoresistivity of CNT-polymer composites. A new multiscale model of 3-dimensional deformable CNT percolating networks has been developed, where the CNT agglomerates were modeled as second phases embedded randomly in the polymer matrix. The newly developed model agrees quantitatively with experimental data. The study found that the CNT agglomeration is responsible for the reduced electrical conductivity and nonlinearity of piezoresistivity with respect to the zero strain. Its effect can be quantified by the newly developed model. Parametric analyses were conducted to show the effects of morphology and electrical properties of CNTs, the Poisson's ratio of CNT-polymer composites and the extent, internal density and size of CNT agglomeration on the electrical conductivity and piezoresistivity. The current work provides a useful analysis tool for designing smart sensing and multifunctional polymer composites.  相似文献   

17.
碳纳米管(CNTs)因具有独特的物理化学及电化学性质,如较大的比表面积、较强的电子转移能力和良好的吸附性能等而引起人们的广泛关注.碳纳米管可以通过物理吸附、静电或疏水作用等非共价结合方式或共价连接方式固定生物大分子(如蛋白质、DNA、抗体等),有效地促进生物大分子与电极间直接、快速的电子转移,可应用于多种电化学生物传感器中.碳纳米管本身在近红外光区具有独特的荧光和拉曼光谱,可以利用多种光谱手段对多种生物分子实现定量检测,因此近年来碳纳米管在光化学生物传感器中的应用也逐渐受到了研究者的重视.本文对碳纳米管在电化学和光化学生物传感器中的应用进行了简要综述和展望.  相似文献   

18.
朱洪波  王培铭  李晨  柳献  杨坪  曹晓润 《硅酸盐学报》2012,40(10):1431-1436
分别采用聚羧酸减水剂、聚乙烯吡咯烷酮(PVP)、洗衣粉(XYF)等3种表面活性剂并结合超声波分散方法,研究了多壁碳纳米管(MWCNTs)在水中和水泥浆中的分散性及其对水泥强度的影响,采用人工观察和扫描电子显微镜分别评价了MWCNTs在水中的分散性和在水泥硬化体中的分布情况。结果表明:单独采用减水剂为分散剂并在超声波分散条件下,MWCNTs在水中和水泥浆中容易发生团聚,无法起到增强作用;在超声波分散作用下,采用PVP和XYF为分散剂能够显著提高MWCNTs在水中和水泥浆中的分散性,PVP大幅度提高了水泥硬化体强度,但XYF却使强度大幅度降低,这是因其具有的较强起泡功能使水泥硬化体中的气泡量增加、气孔尺寸提高,并形成一些较大孔隙,从而显著降低了水泥石的密实性。  相似文献   

19.
Multiwalled carbon nanotube (MWCNT) was modified through plasma polymerization of aniline by applying different radio frequency (radio frequency (RF): 13.56?MHz) powers. The modified MWCNTs were investigated in terms of morphology, chemical structure, and thermal behaviors, indicating the formation of composites based on the surface modification of MWCNT with polyaniline (PANI). These composites were then used in amperometric glucose biosensor, which was constructed by immobilizing glucose oxidase on premodified Pt electrode with PANI/MWCNT composites. The biosensor based on the composite obtained under RF power of 60?W exhibited the high sensitivity of 54.91?µA mM?1 cm?2 to glucose.  相似文献   

20.
The effects of multiwalled carbon nanotubes (MWCNTs) on the thermal properties and flame retardancy of a new polyamide (PA) derived from glutaric acid and aromatic diamine were investigated in this work. The synthesized PA containing pyridine and trialkylamine groups was characterized by 1H NMR and SEC. The PA unit structure was geometrically optimized at the B3LYP/6‐311++G(d, p) level of theory. PA showed a glass transition temperature of 151 ºC. PA nanocomposites containing two different amounts of MWCNTs were prepared via the solution intercalation technique with the solvent N,N‐dimethylacetamide. Transmission electron microscopy showed that MWCNTs were exfoliated in the polymer matrix, resulting in well‐dispersed morphologies at 3 wt% MWCNT content. The redox behaviors of PA and the nanocomposites were examined using cyclic voltammetry (CV). PA showed a reversible oxidation process in the CV scan. Thermal and flammability properties of the nanocomposites were studied by TGA in nitrogen and air, DSC and with a microscale combustion calorimeter. The TGA results showed that the addition of MWCNTs resulted in a substantial increase in the thermal stability and char yields of the nanocomposites compared with neat PA. The heat release rate and total heat release were significantly reduced in the presence of MWCNTs. © 2013 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号