首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Desensitizing agents can inhibit the bonding strength between dentin and adhesive resin cement. This study evaluated the effects of different desensitizing agents on the shear bond strength of adhesive resin cement to dentin. Sixty freshly extracted and caries free teeth were classified into five experimental groups, randomly (n?=?12). Each group was treated with a different desensitizing agent (Teethmate, Shield Force Plus, Admira Protect and Ultra-Ez) respectively, except for an untreated control group. After desensitizing agents and adhesive resin cement were applied to each dentin surface, all specimens were stored in incubator at 37?°C for 24?h. The shear bond strength was tested with a Universal testing machine at a 0.5?mm/min crosshead speed. Data were analysed by using a statistical software (SPSS 22). The results of the measurements were analysed by Kruskal Wallis test with Bonferroni correction and multiple comparisons were made by Wilcoxon test (p???.01). Specimens were examined by a scanning electron microscope, additionally. The Shield Force Plus showed significantly the highest shear bond strength compared with other groups (p?<?.01). Ultra-Ez showed the lowest shear bond strength (p?>?.01). There was no significant difference among Teethmate and Admira Protect groups (p?>?.01). Desensitizing agents containing resin monomers increased the bonding strength, however desensitizers containing calcium phosphate, potassium nitrate and fluoride did not effect the bonding strength of resin cement to dentin.  相似文献   

2.
The aim of this study was to compare the effect of hydroxyapatite (HAP) nano-rods (HAProds) and HAP nano-sticks (HAPsticks) added to commercial adhesives on the macro-shear bond strength (SBS) to dentine and morphology of the adhesive–dentine interface. HAP was added to Single Bond Universal (SBU, 3M ESPE) and Te-Econom Bond (TeE; Ivoclar Vivadent), in the form of water suspensions to avoid agglomeration of nano-particles and to achieve HAP concentrations of 0.5, 1.0 and 1.5 wt%. Following a ‘total-etch’ or a ‘self-etch’ protocol, the adhesives were applied to flat dentine surface of 162 intact human, third molars (N = 6/group). Composite (Z250, 3M ESPE) was built-up using a split stainless steel mould, 3 mm in diameter. SBS was tested using a universal testing machine at 1 mm/min until fracture. Data were statistically analysed using two-way and one-way analysis of variance with Tukey’s post-test (α = 0.05). HAProds had no significant effect on SBS of the tested adhesives while HAPsticks improved bond strength to dentine only of adhesives applied following the ‘total-etch’ total-etch protocol. SBS values of SBU containing 1% HAPsticks (15.10 ± 2.96 MPa) and TeE containing 0.5% HAPsticks applied following the total-etch protocol (12.96 ± 4.48 MPa) were higher than those of their respective control groups (10.36 ± 2.68 and 7.97 ± 3.64 MPa). Samples with higher SBS showed more ‘mixed’ failures. HAP nano-fillers may improve bond strength of total-etch adhesives without an adverse effect on adhesive dispersion on dentine and its ability to infiltrate dentinal tubules.  相似文献   

3.
The purpose of this study was to determine the surface energy parameters of dental self-adhesive resin cements (SRCs) and to measure their bond strength to dentin. Six dental SRCs (RelyX Unicem Clicker, RU; Maxcem Elite, ME; BisCem, BC; Clearfil SA Luting, SA; Multilink Speed, MS; seT PP, SP) and one resin-modified glass ionomer cement (RelyX Luting 2, RL; control) were tested. Smear layer-covered bovine dentin was used as bonding substrate. Using the dynamic sessile drop method, surface energy, surface energy components, degree of hydrophobicity/hydrophilicity (expressed as ΔG sws using thermodynamic notation), and apparent surface energies for each material were calculated. The luting cements were bonded to the dentin and stored in water at 37?°C for 24?h prior to shear bond strength test (n?=?10). Pearson correlation analysis was applied to detect possible correlations between surface energy parameters and measured shear bond strength (α?=?0.05). RU, SA, and MS produced negative ΔG sws values (hydrophobic), whereas ME, BC, SP, and RL yielded positive ones (hydrophilic). RU had the highest value among all six SRCs tested, the value for MS being statistically equivalent (p?=?0.785). The base component, ΔG sws, and surface energy determined with water showed significant negative linear correlations with dentin bond strength (r/p?=??0.801/0.030, ?0.900/0.006, and ?0.892/0.007, respectively). These results suggest that bonding to smear layer-covered bovine dentin was governed by the base component and the hydrophobicity/hydrophilicity of the SRCs.  相似文献   

4.
The aim of this study was to determine the effect of 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based primer on the shear bond strengths of thermally aged self-adhesive and conventional adhesive resin cements and zinc phosphate cement to zirconia and lithium disilicate substructures. Sixty zirconia (Z) and 60 lithium disilicate (L) disk specimens were cut from ceramic blocks. Each group was divided into six subgroups (n = 10). Half of the specimens of each ceramic group were treated with primer (P) and the other half was remained untreated. Three types of cement were applied: zinc phosphate cement [(ZPC) (Hoffmann Harmonic Shades)]; self-adhesive resin cement [(SAC) (RelyX U200)]; conventional adhesive resin cement [(CAC) (C&B)]. The specimens were subjected to thermal aging procedure for 1 week under 37 °C water bath. Shear bond strength (SBS) was determined using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with three-way (ANOVA). Pairwise comparisons and interactions between groups were analyzed by using Tukey’s simultaneous confidence intervals. There was no significant difference between the SBS values of SAC-Z (11,47 ± 0,47) and SAC-ZP (11,39 ± 0,42) (p > 0.05). However, the SBS values of SAC-L (12.34 ± 0,55) and SAC-LP (12,50 ± 0,49) were significantly higher than those of SAC-Z and SAC-ZP (p < 0.00). The use of primer significantly increased the SBS value of CAC-ZP (8,05 ± 0,55) when compared to the SBS value of CAC-Z (3,53 ± 0,41) (p < 0.00). Resin cement that contains methacrylate monomers with phosphoric ester functional groups exhibited reliable bond to zirconia. However, the use of an MDP-based primer may not further improve its bond strength.  相似文献   

5.
The cohesive shear bond strength (SBS) of hardened zinc phosphate cement (CeCe) was comparatively measured with those of the adhesive SBS of the human dentin–cement (DCe), artificial acrylic crown–cement (CrCe), dentin–cement–crown (DCeCr). Results from experiments found that the SBS of CeCe specimen is much higher than those of the adhesive SBS. The average maximum SBS of CeCe, DCe, DCeCr and CrCe specimens of approximately 6.91, 1.02, 0.67 and 0.25 MPa, are respectively obtained. Fractographs taken by scanning electron microscope and close-up camera images of the fracture surfaces were analyzed for their failure mechanisms. The crack initiation and propagation of DCe and CrCe bonding types occur along the bonding interface. In the DCeCr bonding type, the crack initiates at crown–cement interface, propagates downward and changes in to the dentin-cement interface until failure. The average fracture area ratio of the CrCe interface to DCe interface of about 85:15 are observed for the DCeCr de-bonded specimens. Results from force and stress analysis using the two point bonding model indicate that the shear stress is more evident for the bond fracture.  相似文献   

6.
This study evaluated the effect of 2% chlorhexidine gluconate-based cavity disinfectant (CHX) on the microtensile bond strength (μTBS) of glass ionomer, resin-modified glass ionomer and packable resin composite to sound and caries-affected dentin. Sound and occlusal caries-affected human third molars (N?=?36, n?=?3 per group) were randomly divided into three experimental groups to receive one of the following restorative materials. (a) Glass ionomer (Ketac Molar, 3 M ESPE; GI), (b) resin-modified glass ionomer (Vitremer, 3 M ESPE; RMGI) and (c) packable resin composite (Surefil, Dentsply; PRC) with a bonding agent (Prime Bond NT, Dentsply De Trey). Caries was removed using a caries-detecting dye (Caries Detector, Kuraray Medical Ltd.) and flat dentin surfaces were achieved by finishing up to 1200-grit silicon carbide abrasive. Half of the teeth in each group received 2% CHX (Consepsis, Ultradent). Dentin surfaces were built-up with the respective materials incrementally and were sectioned with a slow-speed saw into multiple beams. The beams were subjected to μTBS test (0.5 mm/min) in a Universal Testing Machine. The data were analysed using two-way analysis of variance and Tukey’s tests. For each restorative material, μTBS results were not affected by the application of CHX (p?>?0.05) on both sound and caries-affected dentin (p?>?0.05). PRC in combination with the corresponding bonding agent showed significantly higher results (p?<?0.05) than those of GI and RMGI, on sound and caries-affected teeth, respectively. Cohesive failure in dentin was not observed in any of the groups. The use of 2% chlorhexidine-based cavity disinfectant did not impair the adhesion of the restorative materials tested to either sound or caries-affected dentin.  相似文献   

7.
Objectives: The purpose was to investigate the effect of different surface treatments and bonding agents on the repair bond strength of different resin-based restorative materials by microtensile bond strength (μTBS) testing protocol. Materials and Methods: 24 Grandio SO(VOCO) and 24 Filtek Z250(3?M) resin composite blocks were prepared. Half of the samples (N?=?12) were diamond bur-roughened and the other half (N?=?12) were sandblasted by 50?μm aluminum oxide particles. They were further divided into four sub-groups (n?=?3) and received the following: Sub-Group1: Adper Single Bond2 (Etch&Rinse) (3?M); Sub-Group2: Clearfil SE (Self-etch) (Kuraray); Sub-Group3: Beauty Bond (HEMA-free all-in-one) (Shofu); Sub-Group4: All Bond3 (HEMA-free, hydrophobic, etch&rinse) (Bisco). The samples were repaired by Filtek Z250 to form a block. All of the resultant sub-groups combinations consisted of one of the composite type, surface treatment type, and adhesive systems. A total of 18 groups were prepared including 2 homogeneous blocks. They were thermocycled and μTBS measurements were performed. Data were statistically analyzed with Kruskall–Wallis and Mann–Whitney U tests. Results: The experimental regroups’ μTBS reached to 34.67–66.36% and 43.44–95.52% of the cohesive bond strength for Grandio SO and Z250, respectively. The pre-existing composite type is found to be statistically important. When the surface is bur-finished Grandio performed better; when air-abrasion is considered Z250 showed higher bond strength. All-in-one adhesive system produced the weakest bond strength at all parameters. Conclusion: It may be suggested that when the pre-existing composite is unknown, air-abrasion may be performed with etch&rinse or two-step self-etch adhesives.  相似文献   

8.
The aim of this study was to investigate the microshear bond strength of five universal adhesives for use with demineralized enamel, with and without pre-etching. Using five universal adhesives (Single Bond Universal (SBU), Clearfil Universal (CU), Prime&Bond Elect Universal (PBU), Bisco All Bond Universal (ABU), Gluma Bond Universal (GU)), composite cylinders were bonded to the labial surfaces of extracted upper incisor teeth, with or without pre-etching. A micro-shear bond strength test was performed. The debonding surfaces were evaluated with the use of SEM. The data was analyzed using one-way ANOVA and Tukey’s Post-hoc tests. SBU, ABU, and PBU increased the bond strength statistically when used in etch&rinse mode (p?<?0.05). GU and CU did not change the bond strength statistically with the use of pre-etching (p?>?0.05). The bond strength of universal adhesives on demineralized enamel, with and without initial acid etching, depends on the type of adhesive system used.  相似文献   

9.
Objectives: Evaluate the influence of composite resins viscosity and type of cure of the adhesive systems on the bond strength of composite resins submitted to artificial aging.

Methods: Dentin specimens (n = 240) were divided into 2 groups: Group GC: GrandioSO, and Group GF: GrandioSO Heavy Flow. These groups were subdivided into 6: FM: Futurabond M – light cured, FDCC: Futurabond Dual Cure – chemical cured, FDCL: Futurabond Dual Cure – light cured, CS3: Clearfil S3 – light cured, CDCC: Clearfil Dual Cure – chemical cured, and CDCL: Clearfil Dual Cure – light cured. Resin blocks were build up on the dentin surface. Half of samples on each group were cut to obtain resin/dentin sticks (1 × 1 mm). The other half was first submitted to thermomechanical aging. The dentin/resin sticks were submitted to microtensile bond strength test and the results were analyzed using three-way ANOVA and Tukey’s test (α = 5%).

Results: ANOVA showed significant influence for adhesive (p = 0.0000) and aging (p = 0.0001). No significant influence of the composite viscosity on bond strength was observed (ANOVA: p = 0.0861). For adhesive, the results of Tukey’s test (MPa) were CDCC: 13.44 (±5.13)a; FM: 14,01 (±2.71)a; CDCL: 14.51 (±4.98)a; FDCC: 18.66 (±7.13)b; CS3: 18.80 (±6.50)b; FDCL: 19.18 (±7.39)b. For aging: AGED: 14.99 (±6.32)a; NOT AGED: 17.87 (±5.97)b.

Conclusion: Composite resin viscosities did not influence on the bond strength. Type of cure of the adhesives had influence on the bond strength. Thermomechanical aging decreased the bond strength.  相似文献   


10.
Objectives: The aim of this study was to evaluate the use of dual-cure resin cement to promote the bonding between a veneering PEEK and zirconia or titanium surfaces.

Materials and methods: The surface of titanium and sintered zirconia disks were gritblasted, ultra-sonically cleaned in distilled water, and dryed by oil-free air. Then, a adhesive system was applied on the clean and dry surfaces. Disks of PEEK or 30% glass-reinforced PEEK were cut from a rod and their surface were acid etched and therefore the PEEK roughness was analysed using a contact profilometer. A resin cement was then applied between the substrates and the veneering PEEK and light cured for 4 Shear bond strength tests were performed on PEEK-cement to zirconia or titanium interfaces. Scanning electron microscopy (SEM) analyses were performed to evaluate the samples surface, interface and failure mode.

Results: Surface treatment with acid etching decreased the average roughness of PEEK-based surfaces. oMicroscopic analyses by SEM revealed morphological aspects of a poor bonding between the resin-based cement and PEEK. Those aspects could be confirmed by the low mean values in shear bond strength. The fracture analysis showed that the main failure mode was adhesive, which explain the low values of shear bond strength.

Conclusion: PEEK is a promising material for dental applications. However, significant improvements on surface modifications and in chemical composition of the cement are still required for dental applications involving cementation of PEEK or PEEK-30GF to zirconia or titanium concerning a desirable long-term clinical performance of prosthetic structures.  相似文献   


11.
The aim of this study was to evaluate the immediate and the long-term push-out bond strength of glass fiber posts (GFP) cemented with conventional or self-adhesive dual-curing resin cements, at different root depths. Prior to cementation, the GFP (Reforpost #3, Angelus) were etched with 37% phosphoric acid for 30 s followed by silane for 1 min. Thirty canine roots were divided into two groups (n = 15) according to resin cement type: ARC – dual resin cement (RelyX ARC/3M ESPE) combined with an three-step etch-and-rinse adhesive (Adper Scotch Bond Multi-Purpose Plus 3M/ESPE) or U200 – self-adhesive resin cement (RelyX U200/3M ESPE). The manufacturer’s instructions were followed. After 48 h, the roots were cross-sectioned at three different depths, resulting in serial slices corresponding to the cervical, middle, and apical root thirds. Slices were randomly divided into two groups, according to the period of water storage prior to push-out bond strength analysis: 48 h or 180 days. The data (MPa) were analyzed using three-way ANOVA for randomized blocks (p < 0.05), which showed no significant interaction between the three factors (p = 0.716). The main study factors were also proven not significant (cement: p = 0.711; time: 0.288; root third: p = 0.646). In conclusion, root depth, cement type (self-adhesive or conventional), and storage in water for 180 days did not influence the bond strength of GFP to intracanal dentin.  相似文献   

12.
Objective: The aim of this in vitro study was to evaluate the effect of surface treatments on the shear bond strength of resin cements to zirconia. Material and methods: Sintered zirconia specimens (n = 192) were divided into four different surface treatment groups: control (no treatment); airborne-particle abrasion; glaze layer and hydrofluoric acid (HF) application, and hot etching solution application. Then, each group was divided into four subgroups (n = 12), and three different resin cements were applied to the zirconia surfaces. The shear bond strength value of each specimen was measured after 5000 thermo cycles. The failure types were examined with a stereomicroscope and the effects of the surface treatments were evaluated with a scanning electron microscope. Results were analyzed using analysis of variance and Tukey’s post hoc tests (α = 0.05). Results: The surface treatment and resin cement type significantly affected the bond strength results (p < 0.05). For all resin cements, the airborne-particle abrasion treatment increased the shear bond strength values (p < 0.05). The glaze layer & HF application increased shear bond strength values for all groups, except the Single Bond Universal-RelyX Unicem Aplicap group (p < 0.05). The surface roughness values of airborne-particle abraded specimens were similar to comparable values for specimens from the control group and the hot etching solution group (p > 0.05). The glaze layer & HF application group produced the highest surface roughness values (p < 0.05). Conclusion: The results of this study recommend using the appropriate combination of surface treatment and adhesive/silane coupling agent to achieve durable zirconia-resin bonding.  相似文献   

13.
Wood-based resol resins were prepared from both water- and sodium hydroxide (NaOH)-catalyzed liquefied phenolated wood. The effects of various reaction parameters, e.g. the concentrations of phenol and formaldehyde, temperature, and time, on the extent of yield, free phenol content, molecular weight as well as the gluability of the resol resins have been evaluated. As far as the yield, free phenol content, and molecular weight are concerned, the optimum conditions of resol resin preparation were found to be a phenol : wood weight ratio of 4 : 6, a formaldehyde : phenol mole ratio of 1.5 : 1, a temperature of 82.5°C, and time 3 h. However, these optimum conditions changed when the performance of the adhesives was considered in terms of the adhesive bond strengths for plywood joints. The yield, molecular weights, polydispersity, and gluability of resol resins prepared from water-catalyzed liquefied wood were lower compared with those prepared from NaOH-catalyzed ones. In most cases, the dry-bond strengths of the experimental plywood joints exceeded the minimum Japan Agricultural Standard (JAS) values. On the other hand, except at a higher formaldehyde: phenol ratio (i.e. 2.0 : 1 mole ratio), the plywood joints of all samples delaminated during 'boil-dry-boil' cyclic treatments. However, both dry- and wet-bond strengths of the plywood joints could be improved to exceed standard values by using an additional crosslinking agent, e.g. poly(methylene (polyphenyl isocyanate)) (polymeric MDI). The adhesive perfomance of the wood-based resol resins was explained on the basis of the adhesion between wood veneers and resol resin adhesives.  相似文献   

14.
The aim of the present in vitro study was to evaluate the effect of chlorhexidine, applied before a self-etching adhesive system (Clearfil SE Bond) on microtensile bond strength to superficial and deep dentin (DD), immediately and after six months of water storage (WS). Forty dentin specimens were divided into two groups according to dentin depth: superficial and deep. The specimens were then divided according to the solution to be applied (n = 10): CLX: 2% chlorhexidine (passively applied for 60 s) and NT (no treatment). A self-etching adhesive system was applied according to the manufactures instructions, with composite restorative placed on the dentin surface. After 24 h, dentin–resin blocks were sectioned into beam-shaped specimens that were submitted to microtensile bond strength testing either immediately or after six months of WS. Data were submitted to three-way ANOVA (α = 0.05). Bond strength values for the deep dentin group were significantly lower than those observed for superficial dentin (SD) (p = 0.002), whether chlorhexidine solution had been applied or not. There was no statistical difference in bond strength for specimens tested after 24 h and 6 months of WS. The application of chlorhexidine did not affect immediate and long-term bond strength to dentin. Bond strength in deep dentin was lower than in SD.  相似文献   

15.
This study evaluated the microshear bond strength (μSBS) of a composite resin cement to a pre-hybridized dentinal substrate exposed to two kinds of temporary materials; the influence of different cleaning techniques was investigated. Dentinal surfaces were conditioned with an etch-and-rinse adhesive system to obtain an immediately-sealed (IDS) layer. Each surface was divided into quadrants and covered (1) with an eugenol-free (NE_Group) or (2) with a resin-based provisional agent (CL_Group). After storage, the temporary cement was removed by using one of the following methods: (1) Hand-scaler [S]; (2) Alumina air-abrasion [SB]; (3) Glycine-powder air-abrasion [Gly]; (4) D-Limonene chemical solvent [Or]. A new IDS layer was then created; polyethylene tubes were placed on dentin surfaces and filled with a dual-cure resin cement. A universal testing machine was used for the μSBS tests; conditioned surfaces were analyzed at SEM. Means and SD were calculated; a two-way ANOVA (a: 0.05) was performed to detect significant differences among groups. For NE groups, mean μSBS values (MPa) were: 21.6 ± 6.6 [NE_NoT]; 20.7 ± 4.5 [NE_Or]; 20.1 ± 6.6 [NE_SB]; 19.1 ± 5.3 [NE_S]; 17.8 ± 2.2 [NE_Gly]. No significant differences were found among tested treatments within NE (p: 0.5493). For CL groups, mean μSBS values (MPa) ranged from 15.8 ± 2.8 (CL_S50) to 19.4 ± 2.9 (CL_Gly). Cleaning of the substrate with glycine air-abrasion statistically improved μSBS values with respect to aluminum-oxide (CL_SB: 15.8 ± 2.8) or scaling (CL_S: 16.0 ± 2.4). The application of the IDS technique was effective for preservation of freshly-cut dentin from adverse effects of temporary materials. Glycine air-abrasion is suggested when a temporary resin cement is adopted.  相似文献   

16.
This study evaluated adhesion of dual-polymerized resin cement to superficial dentin (SD) and deep dentin (DD) using one-step self-etch adhesives at varying pH. After smear layer was created on third molars (N?=?60, n?=?15 per group), adhesive resins, 1- Clearfil S3 Bond Plus-CBP (Kuraray) (pH: 2.3), 2- Bisco All Bond Universal-BAU (Bisco) (pH: 3.2), 3- Single Bond Universal Adhesive-SBU (3M ESPE) (pH: 2.7), 4- Nova Compo-B Plus-NCBP (Imicryl) (pH: 2.5–3), were applied on SD and DD. Resin cement (Variolink II, Ivoclar Vivadent) was adhered incrementally on the SD surfaces using polyethylene molds and photo-polymerized for 40?s from 5 directions (output: 1200?mw/cm2). After macroshear and microshear test, in order to achieve DD specimens, SD were removed 1?mm in the pulp direction and the same bonding and test procedures were performed. The specimens were kept at 37?°C for 24?h. The adhesion tests were conducted in the Universal Testing Machine and failure types were analyzed. The data were analyzed using Univariate ANOVA, Tukey`s, Kruskal-Wallis and Mann-Whitney tests (α?=?.05). Test method, dentin level and the adhesive resin significantly affected the results (MPa) (p?<?.05). After macroshear test, more incidences of cohesive failures in DD were observed with NCBP Plus. On SD, NCBP presented the highest results followed by BAU using macroshear test. On DD, NCBP presented the highest results followed by SBU. Not only the pH but the chemical composition affected adhesion especially to SD while in DD, the difference between the adhesive resins was less significant.  相似文献   

17.
This study evaluated the repair microshear bond strength (μSBS) of water stored CAD/CAM resin composite under eight different surface treatments using a silane-containing universal adhesive in etch-and-rinse and self-etching modes. In total, 48 CAD/CAM resin composite slices were prepared from Lava Ultimate CAD/CAM blocks and stored in water for 6 months. The slices were assigned into 8 main groups, according to surface treatments (no treatment, no-treatment/silane, surface grinding, surface grinding/silane, sandblasting, sandblasting/silane, silica coating and silica coating/silane). Each main group was divided according to the universal adhesive application mode (either the etch-and-rinse mode or the self-etch mode). Each slice received 6 resin composite micro-cylinders (0.8 × 1 mm). Micro-shear bond strength was run at 0.5 mm/min crosshead speed until failure. Treated surfaces were examined using SEM. Bond strength data were statistically analyzed using Two-Way ANOVA/Tukey HSD post hoc test. Only ‘surface treatment’ significantly affected the repair μSBS (p ? 0.001). Parameters ‘Adhesive application mode’ and ‘surface treatment × adhesive mode’ showed no significant effect on μSBS (p = 0.458 and p = 0.286 respectively). Regardless of the adhesive application mode, silica coating showed the highest μSBS (21.6 ± 6.8 MPa), while sandblasting/silane showed the lowest μSBS (13.0 ± 6.1 MPa). Regardless of adhesive application mode, the use of silica coating to treat the water-stored CAD/CAM resin composite surfaces is crucial to improve the repair bond strength.  相似文献   

18.
The aim of the present study is to investigate the effect of aging type (thermocycling vs. water storage) and aged unit (block vs. stick) on the repair strength of resin composite to feldspathic porcelain in testing microtensile bond strength (μTBS). Ceramic specimens (N = 30) (10 × 5.7 × 4.5 mm3, Vita Mark II, Vita) were obtained from CAD–CAM blocks. One surface was etched with 10% HF and silanized. An adhesive was applied and resin composite blocks were constructed incrementally on the conditioned surface. The specimens were randomly divided into five groups (n = 6): Control (C): Non-aged; BTC: Blocks were thermocycled (5–55 °C, 6000 cycles); STC: Sticks were thermocycled; BS: Blocks aged in water storage (6 months) after themocycling; SS: Blocks aged in water storage (6 months) after thermocycling. After μTBS test, failure types were classified. Data (MPa) were statistically analyzed (1-way and Dunett and 2-way ANOVA, Tukey`s) (α = 0.05). Two-parameter Weibull distribution values including the Weibull modulus, scale (m), and shape (0) values were calculated. Aging type (p = 0.009) and aged unit (p = 0.000) significantly affected the results. Interaction terms were also significant (p = 0.000). Considering the stick level, there was no significant difference between thermocycling (STC: 25.7 ± 2.3) and water storage (SS: 25.3 ± 3.8) (p > 0.05) but the results were significantly higher when blocks were thermocycled (BTC: 31.6 ± 2.9) (p < 0.05). Weibull modulus and characteristic strength was the highest in BTC (m = 4.2; σo: 34.4) among all other groups (m = 3–3.9; σo: 14.6–28.5). Adhesive failures were common and cohesive failures occurred in less than 5% in all groups. Aging protocol was detrimental on durability of repair strength of resin composite to feldspathic porcelain. Exposing the sticks to either thermocycling or water storage aging should be considered in in vitro studies.  相似文献   

19.
The purpose of this study was to evaluate the shear bond strength and the morphological differences of adhesive/dentin interface of two one-step universal adhesives to dentin using different dentin-conditioning methods with etch-and-rinse mode. Ninety-six dentin specimens were randomly divided into two groups based on application of two adhesives and assigned to three subgroups according to different dentin conditioning (wet-bonding; air-dried; rewetting). After etching and rinsing, experimental dentin conditioning was conducted on the etched dentin specimens. All specimens were subjected to shear bond strength testing using a universal testing machine, and all data were statistically analyzed using two- way analysis of variance with Tukey’s post hoc test. All debonded specimens were examined for fracture pattern by scanning electron microscopy (SEM). Adjunctively, one specimen per group was prepared by the same processing and longitudinally sectioned. Then, the infiltration ability of adhesives into dentin was examined by observing the interface using confocal laser-scanning microscopy (CLSM). Wet and Rewet groups exhibited significantly higher shear bond strength than dry groups on the etch-and-rinse system, regardless of different adhesives. The bond strength between wet and rewet groups showed no significant difference in Tukey’s test. Analysis of failure surface using SEM showed that predominant failure patterns were mixed in both the wet-bonding group and dry-bonding group. CLSM presented that resin penetration into etched dentin was enhanced similarly in wet and rewet group. Application of rewetting agents on dried dentin increased the bonding performance of universal adhesives on etch-and-rinse mode.  相似文献   

20.
This study evaluated the effect of mechanical loading on microtensile bond strengths (μTBS) of universal adhesives to dentin and quantified adhesive dentin penetration using micro-Raman spectroscopy. Human molars had occlusal dentin exposed and were allocated into eight groups: All-Bond Universal and Scotchbond Universal using etch-and-rinse and self-etch approaches, Adper Prompt L-Pop, Adper Single Bond Plus, Clearfil SE Bond, and Optibond FL. Following bonding procedures and build-ups, specimens were either stored in water at 37 °C for 24 h or mechanically loaded (50,000 cycles, 50 N) prior to μTBS test. Additional teeth were prepared for micro-Raman analysis of adhesive penetration and FE-SEM. Data were analyzed by two-way ANOVA and Tukey׳s post hoc test (P<0.05). Mechanical loading had no deleterious effect on μTBS with the exception of Adper Prompt L-Pop. Incomplete infiltration of the demineralized dentin was noticed for adhesives using the etch-and-rinse approach and for Scotchbond Universal in the self-etch approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号