首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
针对积雪观测站点稀少的问题,提出一种考虑海拔影响,能够融合MODIS积雪面积产品和站点观测的雪深空间插值方法,该方法利用去云后MODIS积雪面积产品构建的无积雪“虚拟站点”弥补站点分布不均匀和稀少的不足,利用泛协克里金插值方法考虑海拔对雪深的影响。利用北疆地区50个气象站点的逐日雪深观测资料、逐日MODIS积雪面积产品和AMSR-E被动微波雪水当量和雪深产品,对普通克里金、泛克里金、普通协克里金和泛协克里金插值结果进行了比较研究。研究结果表明:积雪覆盖范围较大时,站点雪深与海拔之间相关系数较大,利用泛协克里金插值结果精度高且稳定;否则利用普通克里金插值精度较高且稳定。通过增加“虚拟站点”,能够提高雪深插值精度,并在一定程度上修正了克里金插值中存在的平滑效应。
  相似文献   

2.
青藏高原MODIS积雪面积比例产品的精度验证与去云研究   总被引:1,自引:0,他引:1  
MODIS积雪产品的精度验证和去云处理是积雪监测研究的基础。首先利用青藏高原典型地区的ETM+数据作为“真值”影像,对MODIS积雪面积比例(FSC)产品在无云条件下的精度进行验证,发展了一个基于三次样条函数插值的去云算法,并采用基于“云假设”的检验和地面站积雪覆盖日数(SCD)检验两种方法对去云算法的精度进行了分析评价。结果表明:MODIS FSC产品在青藏高原地区具有较高的精度,与FSC“真值”相比,其平均绝对误差、均方根误差以及相关系数分别为0.098、0.156和0.916;去云算法能够有效地获取云遮蔽像元的FSC信息,平均绝对误差为0.092,用新生成的无云MODIS FSC产品计算得到的SCD与地面观测值具有较高的一致性(87.03%),平均绝对误差为3.82 d。  相似文献   

3.
空间插值是常用的面雨量计算方法,以三峡区间为研究对象,选取反距离加权、普通克里金、协同克里金3种空间插值算法,进行面雨量空间插值计算和对比分析,其中协同克里金插值将地形作为影响因素。三峡区间面雨量插值结果表明:克里金插值在精度上要优于反距离加权插值,插值效果也更平滑;协同克里金的插值精度优于普通克里金,平均绝对误差、误差均方根相对于普通克里金插值分别降低了19%,10%。因此,在山区或地形复杂区域的面雨量计算,将地形作为协同区域化属性的协同克里金插值更合适。  相似文献   

4.
东北地区MODIS亚像元积雪覆盖率反演及验证   总被引:2,自引:1,他引:1  
以中巴资源卫星数据作为地面“真值”影像,根据东北地区地理环境与气候特点对Salomoson亚像元积雪覆盖率模型参数进行修正,反演东北地区MODIS像元积雪覆盖率,并用不同方案对模型的稳定性和精度进行分析。研究结果表明,经修正后的Salomoson亚像元积雪覆盖率反演模型对不同地貌--景观单元具有稳定性,其中较小的波动源于积雪物理性质差异、大气效应、积雪影像分类误差及影像配准误差。在东北平原区,NDSI值在0.52~0.65时,模型反演精度高,但反演雪盖率总体偏低,主要是由NDSI基于对波段反射率的非线性转换引起的;雪盖率高估的像元主要分布在城区外围以及农村居民点,而覆盖城区、乡、镇以及居民点之间道路的像元雪盖率误差小,其原因是人类活动频率影响像元内积雪组分与非积雪组分的光谱特性的差异程度。与MODIS雪产品进行对比分析,积雪覆盖率提供较传统雪盖制图更加丰富的信息,然而对林区冠层下积雪覆盖二者均未给出准确估计。  相似文献   

5.
风云三号积雪覆盖产品评估   总被引:1,自引:0,他引:1  
由于积雪在地球气候系统和水文循环中调节能量和水交换的特定作用,准确地估计积雪分布和制作高质量的积雪产品对短期气候预测以及水文管理至关重要。中国气象局国家卫星气象中心从2009年开始生成风云三号卫星积雪覆盖率(MULSS多仪器融合数据)产品,为了检验产品算法和为积雪产品在气候研究中的应用提供客观依据,有必要对积雪产品的精度进行评估。以MODIS MOD10C1(MYD10C1)全球日积雪覆盖数据集为参考,基于总精度、Heidke技巧评分等5项检验指标,主要对2010~2014年的风云三号积雪产品进行评估,并进一步分析不同时间尺度积雪覆盖率精度的偏差分布。总体而言,风云三号的卫星积雪产品都与MODIS产品保持了较好的时空一致性。如在积雪季节,风云MULSS积雪产品与MODIS产品的空间分布和时间演变相对统一;但是,可能受到云检测的处理的差异的影响,在融雪期二者的有无雪一致性略有下降。此外,两个产品的积雪覆盖率偏差有明显的年际、季节和月变化,从2012年开始,风云三号MULSS积雪产品相对MODIS的偏差由在中国北部偏高转变为在全国范围内的偏低,从积雪期到融雪期,偏差明显减小。从月的时间尺度来说,东北及新疆北部地区都是积雪变化的敏感区域,青藏高原地区受到地形影响,积雪常年保持,偏差稳定。  相似文献   

6.
以青藏高原为核心的高亚洲地区是我国重要的积雪分布区域,也是气候变化的敏感区域。高精度的积雪遥感监测产品可更好地理解区域水和能量循环过程,提升气候、环境分析和水资源应用潜力,然而由于高亚洲地区地形复杂,高原局部气候变化快,当前所发布的积雪产品的算法各有所长,不同产品的精度评价所采用的评估方法、参考数据和精度指标不统一,这为积雪数据产品应用及评价带来挑战。选择目前国内外已经发布的较为典型的IMS、MODIS无云积雪产品等3种数据,开展基于流域的时空交叉对比分析,并采用同一套地面参考数据集及综合性指标,进行了精度验证和比对研究。结果表明:利用不同数量的地面观测数据进行验证时,3种积雪产品表现都较为稳定,总精度都能达到85%以上,IMS和与微波观测相结合的无云(A-MODIS)产品召回率较高,而MODIS积雪产品的准确度较高,权衡参数F值较高;在积雪季初期3种产品积雪覆盖面积和趋势吻合,后期融雪期出现较大差异,IMS与A-MODIS产品相较于MODIS产品有高估现象,认为与云覆盖及微波数据的质量有很大关系,总体来看IMS产品与MODIS积雪产品精度相接近,但MODIS积雪产品数据质量较高。该项研究可为积雪遥感产品在高亚洲地区应用提供客观的分析和评价。  相似文献   

7.
鉴于MODIS积雪产品存在的空间不连续降低了数据的应用潜力,该文提出一种时空自适应加权的去云方法,同时顾及积雪在空间和时间上的相关性,自适应地衡量两者对积雪分布的影响。以新疆伊犁河流域为实验区,进行了模拟验证和基于气象台站数据的真实验证。结果表明:该方法能完全去除云覆盖,去云精度可达到90%以上,且对不同云量的修复都有较好的鲁棒性,能真实地反映地面积雪覆盖情况,可为积雪监测研究提供数据保障。  相似文献   

8.
MODIS影像因其共享性和时间序列的完整性而成为大区域积雪监测研究广泛使用的数据源,进行MODIS影像波段间融合,能够为积雪研究提供较高分辨率的影像数据源。为了充分利用MODIS影像250 m分辨率波段的空间和光谱信息,提取亚像元级的积雪面积,使用两种具有高光谱保真度的影像融合方法:基于SFIM变换和基于小波变换的融合方法,采取不同的波段组合策略,对MODIS影像bands 1~2和bands 3~7进行融合,并以Landsat TM影像的积雪分类图作为“真值”,对融合后影像进行混合像元分解得到的积雪丰度图的精度进行评价。结果表明:利用基于SFIM变换和小波变换方法融合后影像提取的积雪分类图精度较高,数量精度为75%,比未融合影像积雪分类图的精度提高了6%,表明MODIS影像波段融合是一种提取高精度积雪信息的有效方法。  相似文献   

9.
利用多源遥感数据,结合光学遥感数据高空间分辨率及被动微波数据不受云干扰的优势,利用MODIS逐日积雪标准产品和AMSR-E雪水当量产品,生成了欧亚大陆中高纬度区500m分辨率的逐日无云积雪产品,并利用更高分辨率的Landsat-TM数据生成的积雪产品作为"真值"影像,对研发的逐日无云积雪覆盖产品的精度进行了验证。结果表明:MOD10A1和MYD10A1受云影响均较为严重,无法直接用于地表积雪面积的监测。而本研究合成的逐日无云产品具有较好的精度,与TM积雪图具有较高的一致性。但不同的土地覆盖类型对积雪分类精度有一定的影响。其中,裸地和草原覆盖区精度最好,Kappa系数分别为0.655和0.644,均为高度一致性;其次精度较好的是灌丛和耕地覆盖区,Kappa系数分别为0.584和0.572,均为中等的一致性;而森林覆盖区由于受到高大植被的影响,Kappa系数仅为0.389,合成产品相对TM积雪产品明显高估了森林区积雪面积。整体Kappa均值达到0.569,接近高度一致,研究结果对实时监测欧亚大陆积雪面积具有一定的应用价值。  相似文献   

10.
积雪是冰冻圈中分布最广泛的要素,在气候变化以及水文循环中扮演着重要角色。微波遥感因其全天时全天候工作、具有一定穿透性等优势,成为积雪监测的重要手段。利用FY-3C卫星同步观测获取的微波成像仪(MWRI)被动微波亮度温度数据、融合可见光红外扫描仪(VIRR)与中等分辨率成像光谱仪(MERSI)数据得到的积雪产品,结合MODIS地表分类数据、地表温度数据,发展了基于国产卫星数据的被动微波积雪判识算法。首先提取无云覆盖的不同地表类型被动微波数据像元样本,然后对各地表类型的微波特征进行分析,利用空间聚类的方法,得到TB19V-TB19H、TB19V-TB37V、TB22V、TB22V-TB89V、(TB22V-TB89V)—(TB19V-TB37V)这五类可以较好地区分积雪和其他类似积雪地表的指标。最后应用MODIS积雪产品为参考对该积雪判识算法进行精度评价,该算法在中国西部积雪判识总体精度为87.1%,漏判率为4.6%,误判率为23.3%;Grody算法判识总体精度为78.6%,漏判率为9.8%,误判率为30.7%,该算法判识精度高于Grody算法;通过Kappa系数分析比较,该算法积雪判识结果的Kappa系数值为47.3%,高于Grody算法判识结果的Kappa系数值39.9%,表明该算法积雪判识结果与MODIS积雪产品判识结果一致性更好。  相似文献   

11.
Taking three snow seasons from November 1 to March 31 of year 2002 to 2005 in northern Xinjiang, China as an example, this study develops a new daily snow cover product (500 m) through combining MODIS daily snow cover data and AMSR-E daily snow water equivalent (SWE) data. By taking advantage of both high spatial resolution of optical data and cloud transparency of passive microwave data, the new daily snow cover product greatly complements the deficiency of MODIS product when cloud cover is present especially for snow cover product on a daily basis and effectively improves daily snow detection accuracy. In our example, the daily snow agreement of the new product with the in situ measurements at 20 stations is 75.4%, which is much higher than the 33.7% of the MODIS daily product in all weather conditions, even a little higher than the 71% of the MODIS 8-day product (cloud cover of ~ 5%). Our results also indicate that i) AMSR-E daily SWE imagery generally agrees with MOD10A1 data in detecting snow cover, with overall agreement of 93.4% and snow agreement of 96.6% in the study area; ii) AMSR-E daily SWE imagery underestimates the snow covered area (SCA) due to its coarse spatial resolution; iii) The new snow cover product can better and effectively capture daily SCA dynamics during the snow seasons, which plays a significant role in reduction, mitigation, and prevention of snow-caused disasters in pastoral areas.  相似文献   

12.
Monitoring the extent and pattern of snow cover in the dry, high altitude, Trans Himalayan region (THR) is significant to understand the local and regional impact of ongoing climate change and variability. The freely available Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover images, with 500 m spatial and daily temporal resolution, can provide a basis for regional snow cover mapping, monitoring and hydrological modelling. However, high cloud obscuration remains the main limitation. In this study, we propose a five successive step approach — combining data from the Terra and Aqua satellites; adjacent temporal deduction; spatial filtering based on orthogonal neighbouring pixels; spatial filtering based on a zonal snowline approach; and temporal filtering based on zonal snow cycle — to remove cloud obscuration from MODIS daily snow products. This study also examines the spatial and temporal variability of snow cover in the THR of Nepal in the last decade. Since no ground stations measuring snow data are available in the region, the performance of the proposed methodology is evaluated by comparing the original MODIS snow cover data with least cloud cover against cloud-generated MODIS snow cover data, filled by clouds of another densely cloud-covered product. The analysis indicates that the proposed five-step method is efficient in cloud reduction (with average accuracy of > 91%). The results show very high interannual and intra-seasonal variability of average snow cover, maximum snow extent and snow cover duration over the last decade. The peak snow period has been delayed by about 6.7 days per year and the main agropastoral production areas of the region were found to experience a significant decline in snow cover duration during the last decade.  相似文献   

13.
Google Earth Engine(GEE) is a cloud\|based geospatial processing platform that can analyze geospatial data to achieve parallel processing of massive remote sensing data on a global scale,providing support for remote sensing big data and large\|area research.MODIS snow cover mapping is a global snow cover product established using MODIS data and has been widely used in regional and global climate and environmental monitoring.In the GEE,millions of remote sensing images are stored,including MODIS daily snow products MOD10A1 V5 data and Landsat data.Taking the three research areas in southwestern Xinjiang as examples,the Landsat stored by the GEE were selected,and the NDSI was used to extract the snow cover as the true value of the land cover to evaluate the MOD10A1 accuracy.The results show that the average overall accuracy of MOD10A1 in the snow cover season in southwestern Xinjiang during the period from 2000 to 2016 is 82%,the average misjudgment rate is 2.9%,and the average missed rate is 58.8%.The overall accuracy of MOD10A1 can reach 98% under the clear sky conditions.The accuracy of MOD10A1 is effected by the terrain conditions and cloud cover in different regions.Therefore,the GEE can quickly and effectively filter high quality cloudless Landsat images,and evaluate the accuracy of the MOD10A1 in the snow area around the global regions,displaying intuitively the misjudgment and missed areas in the form of online maps.Meanwhile,GEE provides the Landsat simple cloud score function to calculate the regional cloud cover,which makes the influence of cloud cover on the MOD10A1 accuracy assessment more regionally representative.  相似文献   

14.
We present the design, development, and testing of a new software package for generating snow cover maps. Using a custom inverse distance weighting method, we combine volunteer snow reports, cross-country ski track reports and station measurements to fill cloud gaps in the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product. The method is demonstrated by producing a continuous daily time step snow probability map dataset for the Czech Republic region. For validation, we checked the ability of our method to reconstruct MODIS snow cover under cloud by simulating cloud cover datasets and comparing estimated snow cover to actual MODIS snow cover. The percent correctly classified indicator showed accuracy between 80 and 90% using this method. The software is available as an R package. The output data sets are published on the HydroShare website for download and through a web map service for re-use in third-party applications.  相似文献   

15.
MODIS (Moderate Resolution Imaging Spectroradiometer) snow cover products, of daily, freely available, worldwide spatial extent at medium spatial resolution, have been widely applied in regional snow cover and modeling studies, although high cloud obscuration remains a concern in some applications. In this study, various approaches including daily combination, adjacent temporal deduction, fixed-day combination, flexible multi-day combination, and multi-sensor combination are assessed to remove cloud obscuration while still maintain the temporal and spatial resolutions. The performance of the resultant snow cover maps are quantitatively evaluated against in situ observations at 244 SNOTEL stations over the Pacific Northwest USA during the period of 2006-2008 hydrological years. Results indicate that daily Terra and Aqua MODIS combination and adjacent temporal deduction can reduce cloud obscuration and classification errors although an annual mean of 37% cloud coverage remains. Classification errors in snow-covered months are actually small and tend to underestimate the snow cover. Primary errors of MODIS daily, fixed and flexible multi-day combination products occur during transient months. Flexible multi-day combination is an efficient approach to maintain the balance between temporal resolution and realistic estimation of snow cover extent since it uses two thresholds to control the combination processes. Multi-sensor combinations (daily or multi-day), taking advantage of MODIS high spatial resolution and AMSR-E cloud penetration ability, provide cloud-free products but bring larger image underestimation errors as compared with their MODIS counterparts.  相似文献   

16.
Data in the wavelength range 0.545-1.652 w m from the Moderate Resolution Imaging Spectroradiometer (MODIS), launched aboard the Earth Observing System (EOS) Terra in December 1999, are used to map daily global snow cover at 500 m resolution. However, during darkness, or when the satellite's view of the surface is obscured by cloud, snow cover cannot be mapped using MODIS data. We show that during these conditions, it is possible to supplement the MODIS product by mapping the snow cover using passive microwave data from the Special Sensor Microwave Imager (SSM/I), albeit with much poorer resolution. For a 7-day time period in March 1999, a prototype MODIS snow-cover product was compared with a prototype MODIS-SSM/I product for the same area in the mid-western USA. The combined MODIS-SSM/I product mapped 9% more snow cover than the MODIS-only product.  相似文献   

17.
NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow product (MOD10) creates automated daily, 8-day composite and monthly regional and global snow cover maps. In this study, the MOD10 daily swath imagery (MOD10_L2) and the MODIS cloud mask (MOD35) were validated in the Lower Great Lakes Region, specifically the area to the east of Lake Michigan. Validation of the MOD10_L2 snow product, MOD35 cloud mask and the MOD10_L2 Liberal Cloud Mask was performed using field observations from K-12 student GLOBE (Global Learning and Observations to Benefit the Environment) and SATELLITES (Students And Teachers Evaluating Local Landscapes to Interpret The Earth from Space) programs. Student data consisted of field observations of snow depth, snow water equivalency, cloud type, and total cloud cover. In addition, observations from the National Weather Service (NWS) Cooperative Observing Stations were used. Student observations were taken during field campaigns in the winter of 2001-2002, a winter with very little snow in the Great Lakes region, and the winters of 2000-2001 and 2002-2003, which had significant snow cover. Validation of the MOD10_L2 version 4 snow product with student observations produced an accuracy of 92% while comparison with the NWS stations produced an accuracy of 86%. The higher NWS error appears to come from forested areas. Twenty-five and fifty percent of the errors observed by the students and NWS stations, respectively, occurred when there was only a trace of snow. In addition, 82% of the MODIS cloud masked pixels were identified as either overcast or broken by the student observers while 74% of the pixels the MODIS cloud mask identified as cloudless were identified as clear, isolated or scattered cloud cover by the student observers. The experimental Liberal Cloud Mask eliminated some common errors associated with the MOD35 cloud mask, however, it was found to omit significant cloud cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号