共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
中间相沥青炭微球是一种特殊形态的炭材料前驱体,在众多领域有着广泛的应用。本文介绍了中间相沥青炭微球的制备、结构及性质,在此基础上重点综述了近年来中间相沥青炭微球在高性能锂离子二次电池电极材料方面的应用进展,并指出今后的研究方向。 相似文献
3.
4.
以5V高电压LiNi0.5Mn1 5O4为正极材料,高安全性Li4Ti5O12为负极材料制备了LiNi0.5Mn1.5O4/Li4Ti5O12全电池,重点研究了正负极容量配比对电池电化学性能的影响.其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 mAh·g-1,循环200次的容量保持率为88%;在2C电流下,P/N=1.4的电池的最高放电比容量为135.2 mAh·g-1,循环740次的容量保持率为91.1%.P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关. 相似文献
5.
为了提高水系锂离子电池的电化学性能,以MnCO_3和Li_2CO_3为原料,采用固相法合成了LiMn_2O_4材料,并通过化学氧化法在LiMn_2O_4材料表面包覆聚吡咯(PPy),作为水系锂离子电池的正极材料,并与作负极的活性炭组装成扣式电池,测定其电化学性能。结果表明PPy包覆之后,LiMn_2O_4的比容量从52. 97 m Ah/g提高到了75. 01 m Ah/g,首次充放电效率从87%提高到90%; LiMn_2O_4循环1000次之后,比容量衰减为86%,经过包覆之后,在1000次循环之后比容量还可以保持在91%以上。PPy包覆LiMn_2O_4不但提高了水系锂离子电池的比容量和首次充放电效率,而且提高了循环性能。 相似文献
6.
7.
介绍中间相沥青炭微球的制备方法和发展现状,分析了其在锂离子二次电池等方面的应用及国内外市场前景。 相似文献
8.
9.
采用固相法分别以不同原料合成尖晶石LiMn2O4。采用X射线衍射、扫描电子显微镜、循环伏安及恒电流充放电等技术检测和分析合成产物的物相、形貌及电化学性能。研究表明,与采用电解MnO2为原料合成的LiMn2 O4相比,采用Mn3 O4为原料合成的LiMn2 O4粉末X射线衍射峰强度更大,室温下以0.2 C倍率充放电循环30次时,首次放电比容量和容量保持率分别为128.7 mA.h/g和98.4%,高于以电解MnO2为原料合成LiMn2 O4的123.7 mA.h/g和85.0%。55℃循环时,采用Mn3 O4为原料合成的LiMn2 O4容量保持率比采用电解MnO2为原料合成LiMn2O4的高10.7%。 相似文献
10.
综述了锂离子电池正极材料LiMn2O4的制备、结构及其电化学性能.LiMn2O4具有尖晶石型结构,为锂离子的脱嵌与嵌入提供了三维隧道空间,它具有3 V和4 V两个电压平台,成为锂离子电池最有吸引力的材料. 相似文献
11.
中间相炭微球在锂离子电池负极材料的应用进展 总被引:1,自引:0,他引:1
中间相炭微球(MCMB)具有良好锂离子扩散性、导电性和机械稳定性等优势,是目前应用广泛、综合性能优异的锂离子电池负极材料,但较低理论比容量是制约其发展的关键因素。为了获得性能优良的MCMB基锂离子电池负极材料,改性修饰和复合材料已然成为目前研发重点。笔者论述了碳结构、表界面和复合材料等微观结构设计对MCMB负极材料电化学性能的影响。从碳堆积结构类型、有序性、层间距以及球体粒径大小等方面,论述了碳结构微观设计对MCMB电化学性能的影响。发现具有乱层结构的MCMB在充放电过程中内部产生应力较小,且碳结构较稳定,具有优异循环稳定性;内部具有大量微孔或碳层间距较大的MCMB,在充放电过程中可提高锂离子在电极中的迁移速率,并提供更多的储锂空间,一般具有优良的充放电比容量和倍率性能;小粒径MCMB具有较短的锂离子迁移路径和随之增加的比表面积,通常具有较好倍率性能,伴随着可逆比容量和充放电效率的衰减。从表界面碳层改性、包覆和掺杂改性等方面,论述了表界面改性对MCMB电化学性能的影响。表面碳层修饰可增加MCMB与电解液的相容性及其比表面积,提高了与电解液的接触面积及贮锂容量,改善了锂离子电池负极材料的电化学性能;另外,MCMB表面包覆一层无定型碳,可避免其表面与电解液直接接触,减少电化学副反应的产生,提升其可逆比容量。从碳活性物质复合材料、非碳活性物质复合材料等方面,论述了复合材料微观结构设计对MCMB电化学性能的影响。碳活性物质可降低MCMB内部碳层结构的有序性,减少锂离子嵌入过程中的内部应力,提升MCMB循环稳定性。非碳活性物质诱导MCMB生成更加有序的碳层结构,提高MCMB的比表面积,从而改善MCMB表面与电解液分子的接触能力及其嵌锂性能,有利于提升MCMB负极材料可逆比容量、循环性能和倍率性能。MCMB具有高碳层间距和多缺陷位点等结构特征,有利于钠离子自由脱嵌,应用于钠离子电池时具有良好的可逆比容量、循环稳定性和倍率性能。MCMB的不规则定向层状结构经活化等处理具有较高比表面积,可应用于超级电容器电极材料。最后提出在高性能锂离子电池电极材料快速发展的需求下,从微观结构角度设计MCMB纳米复合材料将是MCMB负极材料的研究重点。 相似文献
12.
13.
介绍中间相沥青炭微球的制备方法和发展现状,分析了其在锂离子二次电池等方面的应用及国内外市场前景. 相似文献
14.
本文综述了锂离子电池正极材料尖晶石型LiMn2O4的国内外研究现状,在分析尖晶石型LiMn2O4结构和其作为正极材料相关理论的基础上,阐述了合成技术,包括制备方法、合成温度、材料粒径等对LiMn2O4材料性能的影响;并就掺杂改性分析了选择合适的掺杂离子、掺杂量、合成工艺等对材料性能的影响。 相似文献
15.
16.
17.
锰酸锂(LiMn2O4)是作为目前性价比最高的商业化锂离子电池正极材料,成为近年来电池研究的热点。但该材料在高温时,由于Mn离子较易溶解于电解液中,制约其广泛应用。本研究中,采用SiO2对其表面进行包覆,减少了活性材料与电解液的直接接触。并通过x-射线衍射、扫描电镜(SEM)、充放电循环测试对合成产物的组成、结构、形貌和电化学性能进行表征,进而研究影响产品的高温性能的主要因素,并筛选出较为合适的改性条件以提高锂电池正极材料LiMn2O4的电化学性能。 相似文献
18.
随着锂离子电池产业的快速发展,退役锂离子电池的回收利用问题已成为工业和学术界关注的热点。前人对废旧锂离子电池中有价值资源的回收做了大量研究,但将回收的锂离子电池材料直接转化为新型储能体系电极材料的研究鲜有报道。为实现退役电池的资源化再利用,可通过简单的H2SO4浸渍法,将废旧锂离子电池中锰酸锂(LiMn2O4)材料转化为MnO2,并用做水系锌离子电池正极材料。通过XRD、XPS、BET、SEM、CV、TEM、EIS以及电化学性能测试等表征方法,探究酸浸渍条件如温度、时间等对所制备MnO2形貌、结构和电化学性能的影响规律。结果表明:LiMn2O4材料经酸浸渍会发生歧化反应,使Li+和部分Mn2+从晶格中溶出,而浸渍温度对离子的溶出速度有显著影响。室温下,LiMn2O4晶格中离子的溶出速度较慢,可获得与其晶体结构相近的λ-MnO<... 相似文献
19.
以废旧锰酸锂(LiMn2O4)电池的正极活性材料为原料,通过酸浸脱锂原位转化获得锰氧化物,X射线衍射(XRD)分析表明所得样品为立方晶系的λ-MnO2 。实验考察了所制备的λ-MnO2 对乙酸和异戊醇合成乙酸异戊酯的酯化反应的催化活性,并探讨了酸浸过程的酸浓度和反应时间对λ-MnO2 催化性能的影响。在室温条件下,当硫酸浓度为0.5 mol·L-1,反应时间为3 h时,所得λ-MnO2 催化乙酸异戊酯酯化反应的酯化率高达94.62%。分别采用红外光谱和气相色谱对酯化产物进行了鉴定。结果表明,λ-MnO2 催化剂对合成乙酸异戊酯反应具有很好的选择性。 相似文献
20.
锂离子电池用层状LiMnO2基正极材料的研究进展 总被引:4,自引:0,他引:4
层状LiMnO2材料因其结构不稳定、循环性能差,因而需对其进行掺杂改性.层状锰系衍生物具有比容量高、循环性能稳定等优点,已成为锂离子电池新的发展方向.介绍了目前对LiMnO2的掺杂改性研究,对多元层状锰基固溶体正极材料作了重点阐述.总结了近年来关于多元层状锰基正极材料的研究发展,介绍了其晶体结构、电化学性能、合成与制备技术,以及进一步的改性研究.如果多元层状固溶体材料的高倍率放电性能得到进一步的提高,则其必将成为新的一代锂离子电池正极的首选材料. 相似文献