首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶胶-凝胶法,合成纳米复合材料硅酸亚铁锂(Li2FeSiO4/C)。用XRD、TEM和电化学方法,研究了Co2+掺杂对Li2FeSiO4/C的影响。结果表明,掺杂适量的Co2+不会改变Li2FeSiO4的正交晶系结构,可稳定材料结构,改善高倍率充放电性能。室温下,Li2Fe0.97Co0.03SiO4/C以0.1C放电的首次放电比容量为151.8(mA.h)/g,20次充放电循环后放电比容量为131.2(mA.h)/g;Li2FeSiO4/C的首次放电比容量为122.0(mA.h)/g,20次循环后,比容量衰减率为20.3%。交流阻抗测试表明:Li2Fe0.97Co0.03SiO4/C在1.5~4.5V下充放电的可逆性优于Li2FeSiO4/C。  相似文献   

2.
LiFePO4具有优良的综合电化学性能,然而它的高倍率性能较差。为了提高其导电性能,进而改善高倍率电化学性能,利用高导电性Ti3SiC2来改性LiFePO4。采用球磨法将Ti3SiC2与LiFePO4进行均匀混合,研究Ti3SiC2添加量对LiFePO4电化学性能的影响。当Ti3SiC2质量分数为4%时,电化学综合性能最好。1、2、5 C的放电容量分别为131.7、119.6、97.4 mAh·g?1,而不加Ti3SiC2试样在相应倍率的放电容量仅为120.8、101.9、64.0 mAh·g?1;恒电位阶跃测试表明添加4% Ti3SiC2使锂离子的扩散速率从8.5×10?11 cm2·s?1提高到8.2×10?10 cm2·s?1;交流阻抗和循环伏安测试还发现Ti3SiC2的加入降低了电荷转移电阻,提高了电极材料的可逆性,从而改善了充放电过程中的动力学限制,提高了高倍率下的放电容量  相似文献   

3.
Mg2+掺杂对LiFePO4结构及电化学性能的影响   总被引:1,自引:0,他引:1  
以MgAC2为掺杂源,采用固相反应法在惰性气氛下合成了掺Mg的LiFePO4正极材料,考察了Mg2 对于目标化合物物理及电化学性能的影响.采用粉末X射线衍射和扫描电镜技术对产物的结构、形貌及粒度等进行了表征,通过恒电流充放电和交流阻抗技术对其电化学性能进行了研究.结果表明:少量的Mg2 掺杂并未影响产物结构,但却有利于减小LiFePO4电荷转移过程中的阻抗,克服该过程中的动力学限制.在0.1C倍率下放电,掺杂LiFePO4与未掺杂LiFePO4的初始放电容量分别为136.9和111.8 mA·h/g,循环50次后,容量分别为135.6和83.9 mA·h/g;与未掺杂的LiFePO4相比,掺镁后的LiFePO4具有更为优良的循环性能.  相似文献   

4.
采用溶胶-凝胶法制备了LiFePO4/C正极材料.采用X射线衍射(XRD)、扫描电镜(SEM)和电化学手段对材料进行了结构表征和性能测试.研究了其前驱体体系pH值对材料性能的影响.结果表明:当前驱体体系pH值为8.4时,LiFePO4/C正极材料具有最佳的电化学性能.在0.1C倍率下充放电,磷酸铁锂首次放电比容量为16...  相似文献   

5.
Li2Mn0.9Ti0.1SiO4锂离子电池正极材料的合成及其性能   总被引:1,自引:0,他引:1  
以Li2SiO3、Mn(CH3COO)2·4H2O和TiO2为原料,利用传统高温固相合成法成功合成出Li2Mn0.9Ti0.1Si04锂离子电池正极材料.采用XRD、FESEM等手段分析了正极材料的相组成、结构和形貌,利用电池测试仪测试了正极材料样品的电化学性能.研究结果表明,固相合成的产物主相为Li2Mn1-x,TLSiO4,同时存在少量的杂质,掺杂Ti后,材料表面形貌从近球形转变为非球形颗粒,颗粒尺寸略有增大,为200~500nm.实验结果表明,Ti掺杂以后,Li2MnSiO4正极材料的可逆容量和循环寿命都得到提高.正极材料电化学性能提高的机理在于Ti掺杂稳定了Li2MnSiO4正极材料的结构.  相似文献   

6.
采用水热法制备层状LiMnO2,并对其进行Ti掺杂制备出LiMn1-xTixO2(x=0.01,0.02,0.03)。用XRD和电化学方法研究了Ti掺杂对LiMnO2的结构及电化学性能的影响。结果表明,掺杂Ti 4+在降低材料结晶度的同时,依旧保持了LiMnO2的层状结构。在室温下以0.1C放电,当LiMn1-xTixO2,x=0.02,时,该材料具有最大放电比容量184.52mA·h/g且20次循环后容量保持率为93.7%。循环伏安和交流阻抗测试显示材料LiMn0.98Ti0.02O2在2.0~4.5V下充放电的可逆性优于LiMnO2,极化电阻明显小于未掺杂样品。  相似文献   

7.
固相法合成锂离子电池正极材料Li2FeSiO4   总被引:2,自引:1,他引:2  
以SiO2、Li2CO3与FeC2O4·2H2O为原料,利用固相法制备出锂离子电池正极材料Li2FeSiO4,并通过X射线衍射,扫描电镜对材料的结构和形貌进行了分析.结果表明,制备出的Li2FeSiO4正极材料,粒度为300~400nm,颗粒分散均匀.在电压1.5~4.8V,室温下用0.1C倍率恒电电流进行充放电测试,Li2FeSiO4正极材料首次充电容量为297mAh/g,放电容量接近170mAh/g,具有良好的电化学性能.  相似文献   

8.
Zn^2+掺杂对锂离子电池正极材料LiFePO4性能的影响   总被引:1,自引:2,他引:1  
以Zn(NO4)2·6H2O为Zn源,蔗糖为C源,对LiFePO4进行了Fe位掺杂和包覆研究.用XRD、交流阻抗方法和恒流充放电研究了材料的结构和电化学性能.结果表明:包覆掺杂后的材料具有橄榄石型晶体结构.从LiFePO4、LiZn0.01Fe0.09PO4到LiZn0.01Fe0.99PO4/C其电荷转移阻抗逐渐减小,材料的可逆性能逐渐增强.掺杂后的材料初始容量和循环性能都得到明显的改善,在0.1C的倍率下,LiFePO4、LiZn0.01Fe0.99PO4和LiZn0.041Fe0.99PO4/C首次放电容量分别为93.1mAh·g-1、130.4mAh·g-1和159.2 mAh·g-1.放电倍率提高到0.5C时,LiZn0.01Fe0.99PO4/C首次放电容量仍有137.3 mAh·g-1,其后的70次循环容量衰减仅4.3%.  相似文献   

9.
以Fe2O3为铁源,采用高温固相法制备了Y3+掺杂的LiFePO4/C复合材料。利用TG-DSC、XRD、SEM、恒电流充放电等手段对材料的合成反应历程、粉体颗粒形貌以及电化学性能进行了研究。结果表明:Fe3+在300~550℃间被还原为Fe2+,经过650℃煅烧后,形成晶型单一的橄榄石结构晶体。LiFe0.98Y0.02PO4/C样品在0.2 C倍率下的首次放电比容量达到了151.6 mA.h/g。  相似文献   

10.
陈野  许维超  温青  段体岗 《表面技术》2012,(5):14-17,69
采用溶胶凝胶法制备了Sb掺杂Ti/SnO2电极,通过XRD,SEM,EDS及电化学测试、氧化物总量测试、加速寿命测试等技术手段,研究了Sb的掺杂对电极结构、形貌、电催化性能、使用寿命的影响。结果表明:Sb的掺入能有效改善电极的表面晶体结构和形貌,降低电极的苯酚氧化电位和液界电阻,提高电极的电催化效率;当制备的溶胶中锡锑比为9∶1时,制得的电极表面形貌平整、致密,稳定性和电催化效果最好。  相似文献   

11.
采用共沉淀-微波法制备了Co掺杂的锂离子电池正极材料LiFe1-xCoxPO4/C(x=0.00、0.01、0.03、0.05、0.07、0.09).研究了微波时间、柠檬酸量、掺Co量等因素对材料结构、形貌和电性能的影响.XRD、SEM和电化学测试表明:该方法制备的样品为橄榄石型非晶结构,粒径尺寸为0.5~5 μm,颗粒分布比较均匀.微波15 min、柠檬酸量为20wt%时,LiFePO4/C电化学性能最优,0.1C倍率放电可达124 mA·h/g,第20次循环的比容量为117mA·h/g.掺杂Co在很大程度上可以提高LiFePO4/C的电化学性能,当Co含量为5wt%时,LiFe0.95Co0.05PO4/C的比容量为最大值,0.1C倍率放电可达136 mA·h/g,第20次循环的比容量为125 mA· h/g,容量保持率为91.9%.  相似文献   

12.
研究了掺杂锂元素对用作锂离子电池负极的石墨材料的结构与性能的影响. XRD及元素分析结果表明 锂以化合物的形式存在于石墨材料中, 由于缺陷结构的增加, 掺杂后石墨材料的BET比表面积略有增大. 电化学测试结果表明 预先掺锂能够有效减少首次充放电过程中的不可逆容量, 使石墨电极的可逆容量增加. 与未掺杂的热处理石墨比较, 可逆嵌锂容量由304.5 mA*h/g增加到312.2 mA*h/g, 首次充放电不可逆容量由66.4 mA*h/g减少到52.9 mA*h/g. 以掺锂改性石墨为负极制作成063448型锂离子电池后, 电池的容量和循环稳定性均得到改善, 以1C倍率充放电时, 放电容量可达845 mA*h, 循环200次后的容量保持率为91.65%.  相似文献   

13.
分别采用混合氢氧化物法和溶胶.凝胶法制备了三元的锂离子电池LiNi0.4Co0.2Mn0.4O2正极材料。采用XRD,SEM以及BET等方法对正极材料进行表征,并对其电化学性能进行测试。实验结果表明,不同的合成方法和工艺条件导致了材料的晶相结构、表观形貌、比表面积以及电化学性能上的差异。LiNi0.4Co0.2Mn0.4O2正极材料中出现的阳离子相互占位将导致其电化学性能变差。与溶胶.凝胶法制备的样品相比,混合氢氧化物法制备的样品具有较高的比表面积(3.2m2/g)和较高的放电比容量。在充放电电压范围为2.5~4.3V、充放电电流为20mA/g条件下,混合氢氧化物法所制备样品的首次放电比容量为180.1mAh·g^-1,20次循环后放电容量为160.2mAh·g^-1,并显示出较好的循环稳定性。  相似文献   

14.
1 INTRODUCTIONSpinelLi[Li1/3Ti5/3O4 ]isaveryattractiveelec trodematerialforitsexcellentcyclelifeandpromisingchargingrateinrechargeableenergystoragecells .Duringelectrochemicalreactionsconsistingofelectronandlithiumioninsertionintoorextractionfromit,itslatticeconstantchangesveryslightly ,soitiscon sidereda“zero strain”insertioncompound[13] .Thismaterialwassuccessfullyusedasanodecoupledwithhighpotentialcathodematerials (LiMn2 O4 ,LiCoO2oractivecarbonfiber)toprovideacellorhybridsu perc…  相似文献   

15.
以LiAc·2H<,2>O、V<,2>O<,5>、NH<,4>H<,2>PO<,4>、蔗糖和乙二醇为原料,采用液相多元醇法合成了锂离子电池正极材料Li<,3>V<,2>(PO<,4>)<,3>,研究了烧结温度对产物电化学性能的影响.XRD、SEM和充放电测试表明:在800℃下烧结10 h合成的样品为单斜晶系;在0.1C、3.0~4.3 V下充放电的首次放电比容量为126 mAh·g<'-1>,第20次循环的比容量为120 mAh·g<'-1>.  相似文献   

16.
掺杂元素La、F对尖晶石LiMn2O4材料结构及性能的影响   总被引:1,自引:0,他引:1  
采用X-射线衍射仪(XRK)、扫描电子显微镜(SEM)、电池测试系统等研究了掺杂元素La、F对高温固相合成尖晶石型LiMn2O4材料的相结构、貌、活化性能、循环稳定性能的影响.结果表明:掺杂元素La、F可有效地提高LiMn2O4样品的充放电效率、循环稳定性能:随着掺杂元素F含量的增加,LiMn2O4-xFx样品的初始容量降低、循环稳定性能呈现出先增后减的变化规律;当掺杂元素La、F的含量较少时,LiLay,Mn2-yO4-xFx样品具有纯的尖晶石LMn2O4结构,样品呈球形或近球形,粒径范围为0.5~2.5 μm,LiLa0.02Mn1.98O3.95F0.05样品的初始放电容量为123.6mAh/g,经30次循环充放电后的容量为114.6mAh/g,容量保持率为92.7%,具有较好的活化性能和循环稳定性能.  相似文献   

17.
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4及其Ni^2+掺杂正极材料,采用XRD,SEM和充放电等方法对目标材料进行了表征。XRD分析表明,掺杂少量Ni^2+后的LiFePO4晶体结构并未发生变化;SEM观察发现,掺杂后,样品的粒径变小;充放电测试得出,比未掺杂的LiFePO4具有更好的电化学性能,首次放电比容量达145mAh&#183;g^-1,高于纯的LiFePO4正极材料的容量90mAh&#183;g^-1,经100次循环后掺杂Ni^2+的LiFePO4和LiFePO4样品的容量保有率分别为91%和53%。  相似文献   

18.
通过溶胶-凝胶法并结合热处理工艺制备LiFePO4粉体,采用XRD、SEM及恒电流充放电技术等方法,研究了煅烧时间对LiFePO4粉体结构、形貌及电化学性能的影响.结果表明:以聚丙烯酸(PAA)、硝酸铁、硝酸锂和磷酸二氢铵为原料,在一定温度下合成了稳定的溶胶和凝胶,经650℃煅烧得到LiFePO4粉体.随着煅烧时间的延长,粉体颗粒逐渐增大,晶型趋于完整;煅烧16h获得的LiFePO4颗粒大小均匀,晶型完整且没有明显团聚现象.1C倍率下首次放比电容量达到140 mAh/g,经100次循环后仍高于130 mAh/g,容量保持率高达93%,表现出良好的充放电稳定性.  相似文献   

19.
通过溶胶-凝胶法合成LiMnPO4/C锂离子电池复合材料,采用XRD、SEM和电化学性能测试对LiMnPO4/C进行性能表征。XRD研究表明,在500°C下能够合成得到纯的LiMnPO4;SEM研究表明,柠檬酸作为螯合剂和碳源能有效地抑制LiMnPO4/C颗粒的长大。在500°C下烧结10h合成的LiMnPO4/C样品的电化学性能最好,首次放电容量为122.6mA·h/g,以0.05C倍率循环30次后其容量为112.4mA·h/g。  相似文献   

20.
采用工业上常用的碳酸锰热解法制备锰氧化物前驱体,与Li2CO3混合后焙烧得到锂离子电池正极材料LiMn2O4,并在碳酸锰制备过程中掺入铝离子制备LiAlxMn2?xO4(x=0.01,0.02,0.03,0.05,0.1)。通过X射线衍射(XRD)和扫描电镜(SEM)对样品进行表征,并对合成材料在常温和高温(55℃)下的电化学性能进行研究。结果表明:合成的前驱体及锰酸锂材料均无杂相;随着Al3+掺杂量的增加,LiAlxMn2-xO4颗粒尺寸不断长大;材料的首次充放电比容量随Al3+掺杂量的升高而下降,但循环性能提高;Al3+的掺入极大地提高了材料的循环性能,尤其是在高温条件下,当掺杂量x=0.05时,1C倍率下循环100次容量的保持率由未掺杂的72.2%升高到90.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号