首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以CFD模型为基础,利用Fluent软件平台对小回沟2201工作面采空区自燃带分布进行模拟分析。模拟结果表明:小回沟煤矿2201工作面在正常通风量条件下,进风侧采空区自燃带危险区域范围为56~180 m,回风侧采空区自燃带危险区域范围为26~140 m;采空区自燃带深部转移速度、自燃带宽度均随着工作面通风量的增加呈指数函数增大;工作面回采期间在保证安全需风量的情况下,尽量减少工作面的配风量,进而减小自燃带的宽度,有利于采空区防灭火工作。  相似文献   

2.
针对塔山煤矿8204-2工作面上方地形复杂、只能在回采起点集中布置钻孔抽采瓦斯的特殊情况,利用数值模拟软件研究分析回采期间不同回采长度和不同注氮量下采空区氧气摩尔浓度分布情况,确定该特殊情况下采空区自燃"三带"和煤自燃危险区域。结果表明:远距离抽采瓦斯使煤自燃危险区域变大;随着回采长度的增长,自燃带逐渐变宽;当回采长度为50 m时,自燃带宽度增宽速率突然变大,进风侧自燃带变宽幅度与回采长度变长幅度比例比回采长度为30~50 m时高出180%,回风侧相应宽度则高出140%,遗煤自燃危险性变大;注氮可大幅度减小采空区煤自燃危险区域。  相似文献   

3.
《煤炭技术》2016,(3):168-170
采用FLUENT软件对2341(3)工作面采空区漏风进行数值模拟,找出采空区自燃"三带"分布的影响因素及规律。现场测定氧浓度,得出2341(3)工作面采空区自燃"三带"宽度:进风侧氧化带范围24.7~45.8 m,回风侧氧化带范围10.8~32 m。  相似文献   

4.
浅埋深大采高工作面采空区漏风严重,为了准确划分采空区煤自燃危险区域,确定了划分采空区自燃"三带"参数指标;通过N15201工作面自燃"三带"现场观测并与数值模拟相结合,对N15201工作面自燃"三带"进行了划分;依据实验室煤样检验结果和自燃"三带"划分结果,得到防止N15201工作面采空区自燃的极限推进度。  相似文献   

5.
为研究沿空掘巷工作面在不同开采时期沿空侧采空区煤自燃危险区域,以营盘壕煤矿2202工作面和沿空侧2201采空区为例,采用煤自然发火实验分析2201采空区遗煤自燃极限参数,提出沿空侧采空区煤自燃危险区域判别条件,通过保护煤柱施工钻孔监测沿空侧2201采空区内气体体积分数和温度,利用Fluent数值模拟研究沿空侧2201采空区氧气体积分数分布规律,划分出沿空侧采空区煤自燃危险区域。结果表明:2202工作面回采期间,保护煤柱应力集中导致煤体破碎,沿空侧采空区氧气体积分数在10.1%~13.8%范围;工作面停采前沿空侧采空区氧气体积分数在10.3%~15%之间,回采期间,沿空侧采空区煤自燃危险区域为2202工作面前部45 m至后部119 m宽55 m靠近煤柱侧的狭长区域;停采前,沿空侧采空区煤自燃危险区域为2202工作面前部63 m至后部107 m宽42 m靠近煤柱侧的狭长区域。  相似文献   

6.
针对新维煤矿8104综采工作面开采煤层含硫量较高且局部富集、采空区遗煤多、距离上层采空区近等客观情况,研究了其采空区煤自燃危险区域分布规律。实施过程中,采用束管监测系统实时测试采空区气体场分布,在此基础上以O2浓度变化作为主要标志、温度变化为辅助标志划分了8104综采工作面采空区的"三带"范围,并采用数值模拟方式与现场实测结果进行了对比分析,结果表明实测与数值模拟结果基本一致。最终确定了该综采工作面采空区自燃带范围:进风侧为40.5~95.5 m,回风侧为15.3~59.7 m。  相似文献   

7.
为准确判定煤矿采空区自燃"三带"的范围,给工作面防灭火技术措施的制定提供支撑,以俄霍布拉克煤矿5106综放工作面为试验工作面,采用现场测试和数值模拟方法,确定了先划分采空区氧化带边界线后再划分自燃"三带"的思路。确定以氧气浓度6%为指标划分氧化带和窒息带的边界,以及以漏风风速0.24 m/min为指标划分氧化带和散热带的边界,进而划分采空区自燃"三带"。研究结果表明,进风侧采空区散热带<20.5 m,氧化带在20.5~127.6 m,窒息带>127.6 m;回风侧采空区散热带<20.2 m,氧化带在20.2~121.45 m,窒息带>121.45 m。该研究结果为5106工作面防灭火技术措施的制定提供了科学依据。  相似文献   

8.
为提高急倾斜煤层伪斜开采条件下瓦斯与煤自燃综合防治效果,基于煤自燃"三带"划分标准和瓦斯爆炸三角形,建立采空区自燃"三带"分布的数学模型,利用COMSOL Multiphysics5.2模拟软件,对东林煤矿3409工作面采空区孔隙率、气体浓度、温度等参数进行模拟分析。结果表明:采空区上部孔隙率较大,下部除回风巷道边缘处较大外,其他区域孔隙率相对较低;氧气浓度结合漏风速度共同划分氧化带范围为:在进风侧氧化带宽23.2 m,在回风侧宽37.6 m,高温区域主要集中在回风侧、采空区的下部距离工作面较近区域;采空区上部瓦斯浓度相对较低,下部瓦斯浓度相对较高;瓦斯爆炸危险区域为中间工作面支架处区域范围为爆炸危险区域。  相似文献   

9.
利用COMSOL模拟软件对高河煤矿W1310工作面采空区自燃"三带"进行数值模拟,通过氧气浓度来划分出采空区自燃"三带"。结果表明:高河矿W1310工作面采空区"三带"划分的分界点是采空区深部距工作面52m和297m;适量降低工作面供风量,可以实现生产过程中遇见断层、陷落柱以及尾采、停采时遏制采空区遗煤自然发火事故的发生。  相似文献   

10.
通过在采空区预埋束管取样器,检测采空区内气体成分随工作面回采进度的变化情况,并对采空区O2浓度随深度的变化规律进行分析。根据实测O2浓度确定出安家岭一号井4106工作面采空区遗煤自燃氧化"三带"的分布状况;在实测数据的校准和验证下,利用数值模拟技术研究了采空区O2浓度在整个采空区的分布规律;采用验证过的数值模拟模型研究了工作面配风量变化对采空区自燃"三带"分布规律的影响。研究表明:大型综放工作面采空区内部高O2浓度区域具有在进、回风巷侧分布范围较广、在采空区中部区域分布狭窄的U形特征;配风量增加,采空区自燃带宽度增大,且回风侧增大幅度最明显。  相似文献   

11.
王家福 《煤炭与化工》2021,44(11):95-98
为防止正益煤业11-104工作面采空区出现遗煤自燃现象,采用Fluent数值模拟软件进行工作面初采和正常回采期间自燃三带分布规律的分析,基于分析结果得出氧化自燃带的范围分别为:初采期间采空区进风侧和回风侧距工作面140~360 m和60~237 m,正常回采期间采空区进风侧和回风侧距工作面160~410 m和90~ 235m.基于采空区特征及自燃"三带"分布规律,设计防灭火方案为采空区密闭+埋管注浆+采空区注氮,并在防灭火方案实施后进行束管监测.结果 表明,防灭火方案实施后,采空区内CO最大浓度低于80 ppm,无自燃现象出现,保障了工作面的安全回采.  相似文献   

12.
张斌 《江西煤炭科技》2020,(3):72-74,78
为有效分析31102采空区自燃"三带"的分布规律,根据31102工作面及采空区的具体特征,采用现场采空区埋管抽气的方式进行采空区内指标气体的监测;根据监测结果,对采空区内高温危险区域进行分析,并根据采空区自燃"三带"的划分方法进行"三带"划分。结果表明:31102工作面采空区进风侧散热带为20 m,氧化带为20~108 m,窒息带为108 m;回风侧采空区散热带为20 m,氧化带范围为20~84 m,窒息带为84 m。  相似文献   

13.
王海生 《煤矿安全》2012,43(10):177-180
通过划分采空区自燃"三带",可以确定出工作面对自燃防治有利的最低月推进度。目前采空区自燃"三带"的划分还没有形成统一的标准。根据棋盘井煤矿0912工作面实际情况,沿采空区布置了4个测点,测定出采空区气体各组分变化规律,确定了低瓦斯矿井工作面采空区自燃"三带"的划分新方法。并利用Fluent软件,对采空区自燃"三带"进行了数值模拟。结果表明:0912工作面采空区自燃"三带"的范围为:散热带<24 m,自燃带24~113 m,窒息带>113m。为了保证在最短的自然发火期内,能将采空区内遗煤甩到自燃"三带"的窒息带以内,工作面最低月推进度应≥68 m。  相似文献   

14.
《煤矿安全》2017,(3):178-181
某矿所采煤层在回采中期出现分层,导致开采过后采空区出现上下2层遗煤,为了探究煤层分层对采空区自燃"三带"的影响,运用Fluent软件模拟了煤层分层前后采空区氧气浓度分布,并将数值模拟与现场实测结果进行比对,具有良好的吻合度,同时,对分层前后采空区自燃"三带"模拟结果进行对比分析。结果表明:煤层分层后,回风侧散热带和自燃带的宽度较煤层分层前分别减小了7 m和3 m,进风侧自燃带宽度减小了1 m;采空区中遗煤量和遗煤的空间分布的变化导致采空区自燃"三带"发生了变化。  相似文献   

15.
针对Ⅱ类自燃煤层易发生煤炭自燃的现状,以袁店一矿1023工作面所属10号煤层为研究对象,对1023工作面采空区煤炭的自燃氧化规律进行了研究。通过在采空区埋设抽气管路,测定采空区温度以及O2、CO2浓度等在工作面推进过程中的动态变化并进行分析。结果表明:采空区内CO2浓度分布符合"一源一汇"工作面的采空区漏风流场分布规律,且回风侧比进风侧更早进入窒息带;采空区自燃"三带"的具体分布范围:散热带距工作面中部距离为0~18.8 m,自燃带距工作面中部距离18.8~71.1 m,窒息带距工作面中部距离大于71.1 m,依据划分的自燃"三带"范围计算出该工作面最低适宜回采速度为42 m/月。  相似文献   

16.
李会兵 《煤》2021,30(1):14-16
针对王庄煤业3801工作面采空区遗煤自燃发火防治,通过理论分析确定使用O 2作为煤自燃预报指标气体来判断采空区自燃情况,根据现场监测结果确定了3801工作面采空区自燃三带分布范围。进风侧:0~20 m为散热带,20~125 m为自燃带,大于125 m为窒息带;回风侧:0~10 m为散热带,10~60 m为自燃带,大于60 m为窒息带。并计算出了工作面最小安全推进度为1.1 m/d。该研究结果为矿井防灭火工作提供了科学依据。  相似文献   

17.
《煤矿安全》2019,(12):163-169
运用FLUENT数值模拟方法对采空区三维耦合场进行研究,简要概括FLUENT流体数值模拟软件基本理论,通过对FLUENT进行自行编程,利用开发模型对杉木树煤矿N3062工作面采空区三位耦合场进行模拟分析,得到漏风流场分布规律。通过理论分析,确定散热带与自燃带分界线处氧浓度降低值,进而准确判定高瓦斯易自燃煤层采空区"自燃带"范围,并通过预先铺设在采空区中的光纤测温系统进一步判定采空区"自燃带"范围。利用实测采空区"自燃带"范围验证数值模拟采空区流场分布准确性,进一步对不同高抽负压条件下采空区自燃带宽度进行模拟,并结合现场实测不同高抽负压条件下回风巷瓦斯浓度及瓦斯抽采率的变化,确定最佳高抽负压范围。最后,采空区三维耦合场数值模拟结果也表明自燃"三带"呈现立体分布,在紧邻支架后部上方位置存在一个自燃发火危险区域。  相似文献   

18.
狄雷 《中州煤炭》2019,(7):68-71
为了解和掌握保德煤矿8号煤层自然发火规律,以81305综放工作面为研究对象,进行煤样升温氧化实验,得出8号煤层自燃指标性气体为CO、C2H4。通过现场实测采空区气体变化规律结合数值模拟,得出81305工作面采空区自燃氧化带的范围为:进风侧200~350 m;工作面中部220~400 m;回风侧100~220 m。计算出预防采空区自燃的工作面最安全的推进速度为61.71 m/月。并提出了保德煤矿8号煤层不同开采时期采空区自然发火防治措施。  相似文献   

19.
对采空区氧气浓度场分布规律的数值模拟技术进行研究,介绍并阐述FLUENT开发采空区氧气浓度场CFD模型的方法与步骤。应用CFD技术对5521-17工作面采空区氧气浓度分布进行模拟,模拟数据与现场基本吻合。根据模拟结果划分"三带"范围,确定了采空区中易自燃区域。结果表明,CFD模拟技术是研究采空区"三带"分布规律的可行手段之一,可为实施采空区煤炭自燃防治技术提供依据。  相似文献   

20.
利用Fluent软件对金源煤矿2321综采面采空区自燃"三带"进行了数值模拟,得出采空区自燃"三带"云图,并现场对2321综采面采空区束管埋点监测采空区气体变化规律,结合氧气浓度划分2321综采面采空区自燃"三带"的分布范围。结果表明:数值模拟和现场实测结果基本相吻合,表明Fluent软件数值模拟对金源煤矿综采面采空区防灭火具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号