首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
研究了HJ低合金高速钢在各种回火规范下的力学性能和组织.结果表明:HJ高速钢随回火温度的升高,残余奥氏体量逐渐减少,硬度先上升,540℃时达二次硬化峰值;随回火温度的进一步升高,硬度下降,这是二次碳化物的聚集长大导致的.540℃×4h回火4次残余奥氏体进一步减少,硬度也呈上升趋势.  相似文献   

2.
研究了淬火、回火温度对W4Mo2Cr4VNb钢组织和力学性能的影响.结果表明,随着淬火温度提高,试验钢奥氏体晶粒长大较快;淬火温度从1160 ℃提高到1200 ℃,高温回火后钢的二次硬化能力明显地提高了,但韧性急剧降低;试验钢在560 ℃左右回火时出现二次硬化峰;经1160 ℃淬火,580 ℃回火后试验钢韧性和抗弯强度较好;经1200 ℃淬火、560~580 ℃回火后,红硬性良好.  相似文献   

3.
热处理对高速钢W6Mo5Cr4V3Co8组织和性能的影响   总被引:1,自引:0,他引:1  
采用OM,SEM,EDS,TEM以及力学性能试验,研究了热处理工艺对不同尺寸规格的粉末冶金高速钢W6Mo5Cr4V3Co8微观组织和力学性能的影响。结果表明,区别于普通高速钢,粉末冶金高速钢微观组织中没有大颗粒尺寸共晶碳化物,退火组织中碳化物均匀、细小,颗粒尺寸小于3μm。因此,不同尺寸规格钢材以及不同截面方向的组织都保持着高度的一致性;试验钢在1080~1180℃较宽的温度范围内淬火都能够获得67 HRC以上的硬度。淬火后的组织为马氏体+残留奥氏体+未溶碳化物,淬火奥氏体晶粒尺寸非常细小;经过高温回火后,试验钢存在明显的二次硬化效应,二次硬化峰出现在520℃。二次硬化现象是由残留奥氏体转变和合金碳化物析出共同作用的结果,TEM分析显示,试验钢经高温回火析出的二次硬化碳化物包含VC;冲击韧性试验结果表明,不同截面尺寸粉末高速钢的冲击韧性基本相当,同一钢材其横向和纵向的冲击韧性相差不大。  相似文献   

4.
回火处理对铸造高速钢轧辊耐磨性的影响   总被引:1,自引:1,他引:0  
通过销盘磨损试验,研究了在两体磨损条件下,两种高速钢轧辊材料在不同回火条件下的抗磨损性能.结果表明,淬火温度较低时,高速钢无回火二次硬化现象;而淬火温度较高时,淬火组织中残留奥氏体增多,回火冷却时转变为马氏体,使钢获得硬化.普通高速钢经1050 ℃淬火+530~560 ℃回火后,耐磨性好,用钛和稀土镁合金处理的高速钢经1040℃淬火+520~540 ℃回火后,耐磨性好.相同磨损条件下,钛和稀土镁合金处理高速钢的磨损量一般低于普通高速钢.  相似文献   

5.
利用OM、SEM、X射线衍射等试验手段对Cr12MoV钢的原始组织、淬火冷却过程中奥氏体晶粒大小、碳化物形态、马氏体及残余奥氏体分解等方面进行了综合分析,研究了一次、二次硬化工艺下钢的强韧化机理。结果表明:一次硬化工艺(淬火+低温回火)可以通过较低的淬火加热温度得到细小的奥氏体晶粒、较少的残余奥氏体和较高的淬火硬度;二次硬化工艺宜采用较高的淬火温度获得合金化程度较高的奥氏体,这对马氏体的高抗回火软化能力、马氏体和残余奥氏体中特殊碳化物的析出强化以及残余奥氏体二次淬火强化等有重要作用。1050℃淬火+550℃两次回火工艺可获得最佳的强韧性。  相似文献   

6.
高速钢分级回火工艺   总被引:1,自引:0,他引:1  
高速钢淬火后要进行560℃×60min的3次高温回火,而等温淬火后要进行4次高温回火。我们根据对高速钢回火机理的分析研究和工艺实践经验的总结,设计了高速钢分级回火工艺。1分级回火工艺高速钢回火的目的,是通过合金碳化物的弥散析出和共格畸变,残留奥氏体的充分转变,淬火应力的消除和组织的稳定,以获得较高的二次硬化硬度、红硬性和一定的强韧性。据此,回火工艺设计为两次回火,第一次为350℃×1h和580℃×1h的分级回火,第二次为560℃×1h的补充回火。第一次回火温度最高为580C,略高于高速钢二次硬化的峰值温度,可以在不明显降低…  相似文献   

7.
以大马士革VG10钢为研究对象,通过显微组织观察、SEM分析、力学性能测定和耐腐蚀性试验等研究了淬火温度、保温时间、冷却方式以及回火温度对VG10钢组织和性能的影响。结果表明:随淬火加热温度增加,马氏体中的碳含量增加,硬度提高。淬火加热温度超过1075℃,晶粒尺寸增大、残留奥氏体增多,硬度、耐蚀性下降; VG10钢在回火过程中会出现二次淬火和二次硬化现象,回火温度为200℃时,硬度值最高为61. 8 HRC; VG10钢最优热处理工艺为:1075℃×20 min,油淬,200℃×2 h回火,空冷。  相似文献   

8.
杨星地 《金属热处理》2014,39(7):107-110
对含V车轴钢热处理过程中正火和回火温度对组织和性能的影响进行了研究。结果表明,第一次正火温度在910 ℃以上时奥氏体晶粒有明显的长大趋势,第二次正火温度在860 ℃以上时奥氏体晶粒开始粗化,回火温度在 550 ℃时拉伸性能良好。通过试验研究得出,采用“840~870 ℃一次正火+800 ℃二次正火+550 ℃回火”的热处理工艺,可以得到均匀的组织、细小的晶粒和良好的力学性能匹配。  相似文献   

9.
热处理工艺对高钒高速钢滚动磨损性能的影响   总被引:1,自引:0,他引:1  
通过改变高钒高速钢淬火、回火加热温度,研究了热处理工艺对其硬度、冲击韧度及滚动磨损性能的影响。利用SEM对其显微组织进行分析,筛选出合适的热处理工艺。研究结果表明:热处理工艺对碳化物的形态、分布影响不大,对基体中的残余奥氏体量与耐磨性的影响较大。淬火温度升高,高钒高速钢的残余奥氏体量逐渐升高;回火温度升高,其残余奥氏体量逐渐减少。淬火温度在900~1000℃时,回火温度对其耐磨性影响较小;淬火温度在1050~1100℃时,450~550℃回火,滚动磨损性能提高较大。以滚动耐磨性为评价指标,综合考虑热处理工艺对力学性能、滚动耐磨性、设备损耗及生产成本的影响,最适宜的热处理工艺为:淬火加热温度1050℃,回火温度450~550℃。  相似文献   

10.
高碳高钒高速钢的高温硬度及热处理的研究   总被引:18,自引:1,他引:17  
研究了高碳高钒高速钢的淬火、回火热处理及高温硬度。结果表明,其峰值硬度温度较常规高速钢低150~250℃左右,随碳量增加,峰值硬度温度降低,相同碳量、钡量增加,峰值硬温度升高。回火后的硬度变化和常规高速钢呈相同的趋势,次硬化温度约在550℃,但二次硬化的峰值硬度峰较小,在二次硬化温度二次回火,二次硬化作用消失。随碳量、钒量增加,高温硬度增加。根据轧辊辊面硬度要求,高碳高钒高速钢的淬火温度为950~  相似文献   

11.
采用Thermo-Calc热力学软件计算了一种新型低钴二次硬化钢高温区间的析出相种类和含量,结合光学显微镜、扫描电镜和力学检测等试验方法,研究了淬火温度对其组织和性能的影响。结果表明,在较低温度淬火时,板条马氏体基体上存在大量富W、Mo的球状M6C析出相。升高淬火温度,M6C相迅速回溶,并在1060 ℃时完全溶解。M6C相的溶解使得二次硬化效果增强、冲击性能提升,同时导致原奥氏体晶粒明显粗化,进而对强韧性产生不利影响,最终试验钢经1060 ℃淬火后获得最佳力学性能配合。  相似文献   

12.
采用扫描电镜(SEM)、电子背散射衍射(EBSD)和力学性能检测等方法,研究了淬火温度对NM450抗腐蚀磨损钢组织和力学性能的影响。结果表明,试验钢在840~960 ℃范围内淬火后低温回火,获得了回火板条马氏体组织。当淬火温度为870 ℃ 或低于此温度淬火时,组织中出现了弥散分布的第二相,其Cr含量明显高于基体,当淬火温度升高至900 ℃及以上时,第二相消失,同时奥氏体晶粒也开始明显长大。随着淬火温度的升高,试验钢的强度和硬度整体趋于下降,冲击吸收能量在900 ℃时达到最高。根据取向分布与晶界分布图可以发现,960 ℃淬火时有效晶粒尺寸最大,大角度晶界占比最低,其冲击性能最差。900 ℃淬火时有效晶粒尺寸与840 ℃相近,但其组织结构更加均匀,大角度晶界所占比例升高,这是900 ℃淬火时冲击性能较高的主要原因。  相似文献   

13.
淬火温度对Q690D高强钢组织和力学性能的影响   总被引:1,自引:0,他引:1  
研究了一种Q690D高强钢在不同温度淬火后的组织和力学性能。结果表明,淬火温度在890~970℃之间,随着淬火温度的升高,试验钢的强度先增大而后逐渐减小,并在930℃时达到最大;冲击韧性和断后伸长率随淬火温度的升高与强度呈现相反的变化规律。在试验淬火温度区间,试验钢的各项力学性能指标均能满足Q690D钢要求。随着淬火温度的升高,Q690D钢奥氏体平均晶粒尺寸由13.2μm长大到35.3μm,粗大的奥氏体晶粒淬火后得到粗大的板条束组织。  相似文献   

14.
通过系列温度淬火试验对低合金耐蚀27CrMo48VNb钢油井管进行热处理,并采用光学显微镜和透射电镜对不同温度淬火后组织、原奥氏体晶粒以及析出相进行了观察,研究了淬火温度对试验钢组织、晶粒尺寸和析出相的影响。结果表明,试验钢淬火后形成了马氏体组织。随着淬火温度升高,淬火后马氏体组织和原奥氏体晶粒尺寸逐渐增加。当淬火温度为890~1000 ℃时,随着淬火温度升高,晶粒尺寸增加较小;当淬火温度超过1000 ℃时,随着淬火温度升高,原奥氏体晶粒显著粗化。组织和原奥氏体晶粒尺寸随淬火温度的变化趋势与高温析出相溶解析出行为有关。试验钢的淬火温度应控制在890~1000 ℃。  相似文献   

15.
对控轧控冷态60 mm厚的E550海洋工程用钢分别进行860、890、930℃的奥氏体化淬火,650℃的回火,使用扫描电子显微镜和电子背散射衍射技术对热处理后钢板的组织和力学性能进行研究。结果表明:调质处理钢板的屈服强度随着淬火温度的升高不断增加,而抗拉强度和伸长率基本保持不变。860℃淬火后的组织细小均匀,晶内有大量小角度晶界存在,冲击吸收能量在188~335 J之间;890℃淬火,晶粒尺寸有所增加,且晶粒间多以大角度晶界为多;930℃淬火,由于温度较高,相邻奥氏体晶粒间出现相互吞并生长现象,冲击吸收能量很不稳定,最低仅为20 J。  相似文献   

16.
曹鑫  李权  杨银辉 《金属热处理》2021,46(12):40-45
为探索30Cr16Mo1VN钢最佳的热处理工艺,采用冲击、拉伸试验机、洛氏硬度计、OM、SEM、XRD、TEM研究了淬、回火温度对该钢组织和力学性能的影响。结果表明:该钢最佳的淬火温度为1050 ℃,淬火后存在少量M23C6碳化物和M2N氮化物阻碍晶界迁移,其平均晶粒尺寸为14.1 μm,而大部分碳/氮化物固溶进基体中,导致Ms点降低,残留奥氏体含量增至59.2%。经-73 ℃冷处理后,大量残留奥氏体转变成马氏体,硬度提高至57 HRC。该钢300 ℃回火时具有良好的强韧性匹配,抗拉强度达2030 MPa,断面收缩率为10.0%。回火后基体发生回复,位错密度降低,随回火温度的升高,基体上析出细小弥散的球状碳化物阻碍位错运动产生二次硬化,450 ℃回火时出现硬度峰值。回火温度低于500 ℃时,该钢的硬度值皆大于55 HRC,具有良好的回火稳定性。  相似文献   

17.
利用洛氏硬度计及场发射扫描电镜等研究了奥氏体化温度和回火温度对热锻模具用钢5Cr5Mo2V组织和性能的影响.结果表明:试验钢经过不同温度的淬火和回火处理后,组织均为回火马氏体+残留奥氏体+碳化物.当5Cr5Mo2V钢在920~1030℃淬火时,随淬火温度升高硬度值增加并于1030℃达到最大值62.53 HRC,之后硬度...  相似文献   

18.
研究了亚温淬火工艺对45钢显微组织和力学性能的影响,探讨了亚温淬火条件下,奥氏体晶粒细化和马氏体转变的特点.结果表明,在760~810℃,随淬火温度升高,45钢的强度、硬度升高:高于810℃后,强度、硬度逐渐下降.45钢亚温淬火后得到细小的板条状马氏体组织,其原因与奥氏体品粒细化及铁素体存在分布状态有关.  相似文献   

19.
淬火温度对550MPa级厚钢板显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
为了提高高强厚钢板低温韧性,对550 MPa级厚钢板进行了730—910℃淬火和600℃回火的热处理,研究不同淬火温度对其组织及力学性能的影响.实验结果表明:在亚温区淬火后回火,随淬火温度升高,试样强度和韧性均表现为先降低后升高,淬火温度升高到完全奥氏体区,试样强度进一步升高,但韧性降低.760℃亚温淬火后回火,试样组织为粗大的多边形铁素体,大量呈长条状、针状M/A组元断续分布在铁素体基体和晶界上,严重恶化韧性,力学性能最差.相比完全奥氏体化淬火后回火,850℃亚温淬火后回火,试样具有最佳强韧配合,这是由于组织细化,铁素体的出现增加了大角晶界比例,以及存在大量均匀位错胞状亚结构和稳定薄膜状残余奥氏体引起的.  相似文献   

20.
为了提高高强厚钢板低温韧性,对550 MPa级厚钢板进行了730-910℃淬火和600℃回火的热处理,研究不同淬火温度对其组织及力学性能的影响.实验结果表明:在亚温区淬火后回火,随淬火温度升高,试样强度和韧性均表现为先降低后升高,淬火温度升高到完全奥氏体区,试样强度进一步升高,但韧性降低.760℃亚温淬火后回火,试样组织为粗大的多边形铁素体,大量呈长条状、针状M/A组元断续分布在铁素体基体和晶界上,严重恶化韧性,力学性能最差.相比完全奥氏体化淬火后回火,850℃亚温淬火后回火,试样具有最佳强韧配合,这是由于组织细化,铁素体的出现增加了大角晶界比例,以及存在大量均匀位错胞状亚结构和稳定薄膜状残余奥氏体引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号