首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoplasmic tail of Kre6p, a Golgi membrane protein involved in cell wall synthesis, interacts with the actin patch assembly components Las17p and Sla1p in a two-hybrid assay, and Kre6p co-immunoprecipitates with Las17p. Kre6p showed extensive co-localization with Och1p-containing cis-Golgi vesicles. The correct localization of Kre6p requires its cytoplasmic tail, Las17p, Sla1p and Vrp1p, suggesting that the cytoplasmic tail of Kre6p acts as a receptor, linking this cis-Golgi protein to Las17p and Sla1p. The actin patch assembly mutants las17 delta, sla1delta and vrp1 delta showed elevated levels of cell wall beta-1,6-glucan, and mutant cells were capable of only a limited number of cell divisions compared to wild-type. EM image analysis and beta-1,6-glucan localization indicated abnormal wall proliferation in the mother cells of these mutants. The pattern of cell wall hypertrophy indicates a failure to restrict cell wall growth to the bud.  相似文献   

2.
Alpha-1,3-Glucan is a cell wall component in Schizosaccharomyces pombe and is exclusive to budding yeast. We analysed the ultrastructure of the cell wall in the alpha-glucan synthase mutant mok1 and determined the role of alpha-1,3-glucan in cell wall formation of Sz. pombe. The mok1 mutant cell has an abnormal shape, with swelling at the tip or at the site of the septum. The cell wall is thicker and looser than that of wild-type cells, and the layered structure of the cell wall is broken. The glucan fibrils forming the protoplast retain a fine fibril structure, although their development into bundles is abnormal. We also report the localization of Mok1p by immunoelectron microscopy using high-pressure freeze substitution and SDS-digested freeze-fracture replica labelling methods. The Mok1p is localized on the cell membrane and moves from the cell tip to the medial region during the cell cycle. These results confirm that Mok1p plays an important role in the normal construction of the cell wall and in the primary step of glucan bundle formation, and that it is required for new cell wall synthesis during vegetative growth. These findings suggest that alpha-1,3-glucan is an essential component for cell wall formation in fission yeast.  相似文献   

3.
Most proteins involved in the synthesis of the GPI core structure of Saccharomyces cerevisiae are essential for growth. To explore the relationship between the GPI anchor structure and beta-1,6-glucan synthesis, we screened deletion mutants in genes involved in GPI synthesis for osmotic remedial growth. Heterozygous diploid strains were dissected on medium with osmotic support and slow growth of the mcd 4 deletion mutant was observed. The mcd 4 mutant showed abnormal morphology and cell aggregation, and was hypersensitive to SDS, hygromycin B and K1 killer toxin. Incorporation of GPI cell wall proteins was examined using a GPI-Flo 1 fusion protein. The result suggested that the mcd 4 deletion causes a decrease in GPI cell wall proteins levels. The mutation also caused a decrease in mannan levels and an increase in alkali-insoluble beta-1,6-glucan and chitin levels in the cell wall.  相似文献   

4.
Fks1p and Fks2p are related proteins thought to be catalytic subunits of the beta-1,3-glucan synthase. Analysis of fks1 delta mutants showed a partial K1 killer toxin-resistant phenotype and a 30% reduction in alkali-soluble beta-1,3-glucan that was accompanied by a modest reduction in beta-1,6-glucan. The gas1 delta mutant lacking a 1,3-beta-glucanosyltransferase displayed a similar reduction in alkali-soluble beta-1,3-glucan but did not share the beta-1,6-glucan defect, indicating that beta-1,6-glucan reduction is not a general phenotype among beta-1,3-glucan biosynthetic mutants. Overexpression of FKS2 suppressed the killer toxin phenotype of fks1 delta mutants, implicating Fks2p in the biosynthesis of the residual beta-1,6-glucan present in fks1 delta cells. In addition, eight out of 12 fks1ts fks2 delta mutants had altered beta-glucan levels at the permissive temperature: the partial killer resistant FKS1F1258Y N1520D allele was severely affected in both polymers and displayed a 55% reduction in beta-1,6-glucan, while the in vitro hyperactive allele FKS1T605I M761T increased both beta-glucan levels. These beta-1,6-glucan phenotypes may be due to altered availability of, and structural changes in, the beta-1,3-glucan polymer, which might serve as a beta-1,6-glucan acceptor at the cell surface. Alternatively, Fks1p and Fks2p could actively participate in the biosynthesis of both polymers as beta-glucan transporters. We analysed Fks1p and Fks2p in beta-1,6-glucan deficient mutants and found that they were mislocalized and that the mutants had reduced in vitro glucan synthase activity, possibly contributing to the observed beta-1,6-glucan defects.  相似文献   

5.
Evidence is presented that temperature-sensitive Saccharomyces cerevisiae mutants, impaired in dolichol kinase (Sec59p) or dolichyl phosphate mannose synthase (Dpm1p) activity have an aberrant cell wall composition and ultrastructure. The mutants were oversensitive to Calcofluor white, an agent interacting with the cell wall chitin. In accordance with this, chemical analysis of the cell wall alkali-insoluble fraction indicated an increased amount of chitin and changes in the quantity of beta1,6- and beta1,3-glucan in sec59-1 and dpm1-6 mutants. In order to unravel the link between the formation of dolichyl phosphate and dolichyl phosphate mannose and the cell wall assembly, we screened a yeast genomic library for a multicopy suppressors of the thermosensitive phenotype. The RER2 and SRT1 genes, encoding cis-prenyltransferases, were isolated. In addition, the ROT1 gene, encoding protein involved in beta1,6-glucan synthesis (Machi et al., 2004) and protein folding (Takeuchi et al., 2006) acted as a multicopy suppressor of the temperature-sensitive phenotype of the sec59-1 mutant. The cell wall of the mutants and of mutants bearing the multicopy suppressors was analysed for carbohydrate and mannoprotein content. We also examined the glycosylation status of the plasma membrane protein Gas1p, a beta1,3-glucan elongase, and the degree of phosphorylation of the Mpk1/Slt2 protein, involved in the cell wall integrity pathway.  相似文献   

6.
The Saccharomyces cerevisiae cwh43-2 mutant, originally isolated for its Calcofluor white hypersensitivity, displays several cell wall defects similar to mutants in the PKC1-MPK1 pathway, including a growth defect and increased release of beta-1,6-glucan and beta-glucosylated proteins into the growth medium at increased temperatures. The cloning of CWH43 showed that it corresponds to YCR017c and encodes a protein with 14-16 transmembrane segments containing several putative phosphorylation and glycosylation sites. The N-terminal part of the amino acid sequence of Cwh43p shows 40% similarity with the mammalian FRAG1, a membrane protein that activates the fibroblast growth factor receptor of rat osteosarcoma (FGFR2-ROS) and with protein sequences of four uncharacterized ORFs from Caenorhabditis elegans and one from Drosophila melanogaster. The C-terminus of Cwh43p shows low similarities with a xylose permease of Bacillus megaterium and with putative sugar transporter from D. melanogaster, and has 52% similarity with a protein sequence from a Schizosaccharomyces pombe cDNA. A Cwh43-GFP fusion protein suggested a plasma membrane localization, although localization to the internal structure of the cells could not be excluded, and it concentrates to the bud tip of small budded cells and to the neck of dividing cells. Deletion of CWH43 resulted in cell wall defects less pronounced than those of the cwh43-2 mutant. This allele-specific phenotype appears to be due to a G-R substitution at position 57 in a highly conserved region of the protein. Genetic analysis places CWH43 upstream of the BCK2 branch of the PKC1 signalling pathway, since cwh43 mutations were synthetic lethal with pkc1 deletion, whereas the cwh43 defects could be rescued by overexpression of BCK2 and not by high-copy-number expression of genes encoding downstream proteins of the PKC1 pathway However, unlike BCK2, whose disruption in a cln3 mutant resulted in growth arrest in G(1), no growth defect was observed in a double cwh43 cln3 mutants. Taken together, it is proposed that CWH43 encodes a protein with putative sensor and transporter domains acting in parallel to the main PKC1-dependent cell wall integrity pathway, and that this gene has evolved into two distinct genes in higher eukaryotes.  相似文献   

7.
Saccharomyces cerevisiae kre5delta mutants lack beta-1,6-glucan, a polymer required for proper cell wall assembly and architecture. A functional and cell biological analysis of Kre5p was conducted to further elucidate the role of this diverged protein glucosyltransferase-like protein in beta-1,6-glucan synthesis. Kre5p was found to be a primarily soluble N-glycoprotein of approximately 200 kDa, that localizes to the endoplasmic reticulum. The terminal phenotype of Kre5p-deficient cells was observed, and revealed a severe cell wall morphological defect. KRE6, encoding a glucanase-like protein, was identified as a multicopy suppressor of a temperature-sensitive kre5 allele, suggesting that these proteins may participate in a common beta-1,6-biosynthetic pathway. An analysis of truncated versions of Kre5p indicated that all major regions of the protein are required for viability. Finally, Candida albicans KRE5 was shown to partially restore growth to S. cerevisiae kre5delta cells, suggesting that these proteins are functionally related.  相似文献   

8.
Yeasts have developed three different ways of attaching proteins to cell wall glucan. Some proteins are bound to beta-1,3-glucan non-covalently, while others are attached covalently, through GPI-anchor and beta-1,6-glucan, or directly to beta-1,3-glucan by alkali-labile ester linkage between the gamma-carboxyl groups of glutamic acid and the hydroxyl groups of glucoses (Pir proteins). In order to obtain further insight into the binding mechanism, a novel, simple binding assay for Pir-family proteins was developed. It has been shown that PIR, as well as SCW4 mutants, can bind externally added Ccw5p to their cell walls. A study of appropriate binding conditions revealed the requirement of the native conformation of Ccw5p. The presence of EDTA blocked the binding of Ccw5p, indicating the cation dependence of the reaction. Both wild-type and mutant cells showed enhanced binding of the Ccw5p in 0.6 M KCl. After disruption of all Pir genes (CCW5, CCW6, CCW7 and CCW8), 67 kDa protein still remained in NaOH extract. SCW4 disruption in the ccw5ccw6ccw7ccw8 mutant resulted in disappearance of the 67 kDa band from the extract, indicating that Scw4p could also be covalently linked to the cell wall by a so-far unidentified alkali-labile linkage.  相似文献   

9.
The Rvs161 and Rvs167 proteins are known to play a role in actin cytokeleton organization and endocytosis. Moreover, Rvs167p functionally interacts with the myosin Myo2p. Therefore, we explored the involvement of the Rvs proteins in vesicle traffic and in cell integrity. The rvs mutants accumulate late secretory vesicles at sites of membrane and cell wall construction. They are synthetic-lethal with the slt2/mpk1 mutation, which affects the MAP kinase cascade controlled by Pkc1p and is required for cell integrity. The phenotype of the double mutants is close to that described for the pkc1 mutant. Synthetic defects for growth are also observed with mutation in KRE6, a gene coding for a glucan synthase, required for cell wall construction. These data support the idea that the Rvs proteins are involved in the late targeting of vesicles whose cargoes are required for cell wall construction.  相似文献   

10.
The cell wall is essential to preserve osmotic integrity of yeast cells. Some phenotypic traits of cell wall mutants suggest that, as a result of a weakening of the cell wall, hypo-osmotic stress-like conditions are created. Consequent expansion of the cell wall and stretching of the plasma membrane trigger a complex response to prevent cell lysis. In this work we examined two conditions that generate a cell wall and membrane stress: one is represented by the cell wall mutant gas1Delta and the other by a hypo-osmotic shock. We examined the actin cytoskeleton and the role of the cell wall sensors Wsc1p and Mid2p in these stress conditions. In the gas1 null mutant cells, which lack a beta(1,3)-glucanosyltransferase activity required for cell wall assembly, a constitutive marked depolarization of actin cytoskeleton was found. In a hypo-osmotic shock wild-type cells showed a transient depolarization of actin cytoskeleton. The percentage of depolarized cells was maximal at 30 min after the shift and then progressively decreased until cells reached a new steady-state condition. The maximal response was proportional to the magnitude of the difference in the external osmolarity before and after the shift within a given range of osmolarities. Loss of Wsc1p specifically delayed the repolarization of the actin cytoskeleton, whereas Wsc1p and Mid2p were essential for the maintenance of cell integrity in gas1Delta cells. The control of actin cytoskeleton is an important element in the context of the compensatory response to cell wall weakening. Wsc1p appears to be an important regulator of the actin network rearrangements in conditions of cell wall expansion and membrane stretching.  相似文献   

11.
Using a screening procedure for obtaining yeast strains with enhanced ability to secrete heterologous protein, we have isolated a mutant with alteration of the cell wall structure. This mutant displayed strong decrease in cell wall mannoprotein content, which was not accompanied by decreased glycosylation of secreted proteins. The mutation defines a gene, designated SSU21(identical to previously characterized MCD4), which encodes a novel vacuolar protein. SSU21 is probably connected to the cell integrity protein kinase C-mediated pathway, since ssu21 and pkc1Delta double mutant is synthetic lethal. To our knowledge, this is the first example of a yeast vacuolar protein whose alteration results in a cell wall defect.  相似文献   

12.
To a yeast, the cell wall is an important living organelle performing a number of vital functions, including osmotic and physical protection, selective permeability barrier, immobilized enzyme support and cell-cell recognition and adhesion. Our basic model of wall structure involves attachment of secreted mannoproteins to a fibrillar inner layer of β-glucan. Recent work has emphasised the importance of chitin in lateral walls, examined the mechanisms of attachment of mannoproteins to the various cell wall glucan fractions and elucidated the pathway of β-glucan synthesis, by means of resistance to glucan-binding killer toxins. The conventional view of wall structure has been challenged by the discovery of a class of GPI-anchored, serine/threonine-rich wall-proteins. It has been suggested, that these proteins are anchored in the plasma membrane, spanning the wall with extended O-glycosylated structures and protruding out into the medium. Examination of these proteins shows a diversity of structures, sizes and behaviour that makes it improbable that these represent a new class of wall proteins. The possible roles of one of these proteins associated with flocculation, Flo1p, are discussed.  相似文献   

13.
14.
The synthesis of beta-1,3-glucan, the structural component of the yeast cell wall that gives shape to the cell, occurs at the plasma membrane and is the result of the activity of at least a two-component complex. Fks1p is the catalytic subunit directly responsible for the synthesis of beta-1,3-glucan, whilst the second subunit, Rho1p, has a GTP-dependent regulatory role (Yamochi et al., 1994). RHO1 has been characterized in Saccharomyces cerevisiae (Yamochi et al., 1994), and in several other fungal species. In this work, we have used degenerate oligonucleotides derived from the conserved regions of Rho1ps to isolate the RHO1 gene of Yarrowia lipolytica. The gene isolated in this way, which we have named YlRHO1, encodes a 204 amino acid protein that shows a high degree of homology with other Rho1ps. However, unlike S. cerevisiae, the ylrho1Delta disruptant strain in Y. lipolytica is viable, although it exhibits an increased sensitivity to Calcofluor white and Congo red. Also, YlRHO1 complements rho1 lethality in S. cerevisiae at both 28 degrees C and 37 degrees C. The complete sequence of YlRHO1 can be obtained from GenBank under Accession No. AF279915.  相似文献   

15.
The synthesis of beta-1,3-glucan, the structural component of the yeast cell wall which gives shape to the cell, occurs at the plasma membrane and is the result of the activity of at least a two-component complex. Fks1p is the catalytic subunit directly responsible for the synthesis of beta-1,3-glucan, whilst the second subunit, Rho1p, has a GTP-dependent regulatory role. FKS1 has been characterized in Saccharomyces cerevisiae, where its function is at least partially redundant with that of FKS2/GSC2. FKS homologues have also been identified in several other fungal species, including Candida albicans, Schizosaccharomyces pombe, Aspergillus nidulans, Cryptococcus neoformans and Paracoccidiodes brasiliensis. In this work, we have used degenerate oligonucleotides derived from the conserved regions of Fks1ps to isolate the possible FKS homologue genes of the strictly aerobic non-conventional yeast Yarrowia lipolytica. Using this approach, we have isolated a single FKS homologue which we have named YlFKS1; this codes a 1961 amino acid protein that shows a high degree of homology with other Fksps. Expression analysis of YlFKS1 under different conditions affecting the cell wall did not reveal significant differences. Finally, attempts to obtain a Y. lipolytica strain containing a disrupted YlFKS1 allele failed, despite having used two different techniques. Taken together, these results suggest that, unlike S. cerevisiae, YlFKS1 is the only FKS1 homologue in Y. lipolytica and is essential for growth.  相似文献   

16.
We have previously shown that mutations in the yeast KNR4 gene resulted in pleiotropic cell wall defects, including resistance to killer 9 toxin, elevated osmotic sensitivity to SDS and increased resistance to zymolyase, a (1→3)-β-glucanase. In this report, we further demonstrated that knr4 mutant cells were more permeable to a chromogenic substrate, X-GAL, suggesting that the mutant cell walls were leakier to certain non-permeable molecules. To determine if these defects resulted from structural changes in the cell walls, we analysed the alkali-insoluble cell wall components using HPLC assays developed for this purpose. Comparative analysis using four isogenic strains from a ‘knr4 disrupted’ tetrad demonstrated that mutant cell walls contained much less (1→3)-β-glucan and (1→6)-β-glucan; however, the level of chitin, a minor cell wall component, was found to be five times higher in the mutant strains compared to the wild-type strains. The data suggested that the knr4 mutant cell walls were dramatically weakened, which may explain the pleiotropic cell wall defects.  相似文献   

17.
18.
Pulse-chase experiments with [14C]glucose demonstrated that in the cell wall of wild-type Saccharomyces cerevisiae alkali-soluble (1–3)-β-glucan serves as a precursor for alkali-insoluble (1–3)-β-glucan. The following observations support the notion that the insolubilization of the glucan is caused by linkage to chitin: (i) degradation of chitin by chitinase completely dissolved the glucan, and (ii) disruption of the gene for chitin synthase 3 prevented the formation of alkali-insoluble glucan. These cells, unable to form a glucan–chitin complex, were highly vulnerable to hypo-osmotic shock indicating that the linkage of the two polymers significantly contributes to the mechanical strength of the cell wall. Conversion of alkali-soluble glucan into alkali-insoluble glucan occurred both early and late during budding and also in the ts-mutant cdc24-1 in the absence of bud formation.  相似文献   

19.
Crh1p and Crh2p of Saccharomyces cerevisiae are cell wall proteins covalently attached to cell wall glucan and are thought to be putative glycosidases involved in cell wall remodelling. We investigated whether YlCrh1p and YlCrh2p, the Yarrowia lipolytica proteins homologous to ScCrh1p and ScCrh2p, had the required glycosidase activity for cell wall biosynthesis and maintenance. Ylcrh1Delta and Ylcrh2Delta mutants showed sensitivity to compounds that interfere with cell wall construction. Soluble forms of YlCrh1p and YlCrh2p that lacked the C-terminal consensus sequence for GPI anchoring showed glycosidase activity on laminarin, a substrate carrying beta-1,3-glycosidic linkage. Our study suggests that the YlCrh1p and YlCrh2p may participate in cell wall biosynthesis and remodelling through their beta-1,3-glycosidase activity.  相似文献   

20.
The deletion of MCD4 leads to an increase in beta-1,6-glucan level and a decrease in glycosylphosphatidylinositol-anchored protein and mannan levels in the cell wall of Saccharomyces cerevisiae, suggesting that mcd4 deletion mutant (mcd4Delta) displays beta-glucans on the cell surface without a mannan cover. An observation of the cell surface of mcd4Delta cells and an examination of the effect of contact between mcd4Delta cells and mouse macrophages indicated that macrophages were activated by contact with mcd4Delta cells displaying beta-glucans on the cell surface. We further examined the effect of intraperitoneal ethanol-fixed mcd4Delta cells on the survival period of mice infected with Candida albicans. mcd4Delta cells prolonged the survival period, implying that mcd4Delta cells may enhance the immune function of mice via macrophage activation. Moreover, we examined the structures of beta-glucans (i.e., alkali- and acetic acid-insoluble beta-glucans) extracted from mcd4Delta with (13)C-NMR and the effect of extracted beta-glucans on TNF-alpha secretion from macrophages. The structures of the beta-glucans from mcd4Delta differed from those of wild type (WT); however, there was no difference in tumor necrosis factor-alpha (TNF-alpha) secretion level between beta-glucans from mcd4Delta and those from WT. The yield of purified beta-glucans obtained from dry cells of mcd4Delta was higher than that obtained from dry cells of WT. mcd4Delta may be a superior strain for the preparation of beta-glucans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号