首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article focuses on the development of the anode layer for solid oxide fuel cells by plasma spraying. The composite (cermet) anode, developed by thermal spraying, consisted of nickel and yttria-stabilized zirconia (YSZ). The effect of different plasma-spraying technologies on the microstructure characteristics and the electrochemical behavior of the anode layer were investigated. Coatings were fabricated by spraying nickel-coated graphite or nickel oxide with YSZ using a Triplex II plasma torch under atmospheric conditions as well as a standard F4 torch under atmospheric or soft-vacuum conditions. The investigations were directed to have an open microporous structure, higher electrical conductivity, and catalytic activity of anode deposits. Porosity was investigated by measuring the gas permeability. Scanning electron microscopy and x-ray diffraction technologies were applied to examine the morphology, microstructure, and composition of the layers. Electrical conductivity measurements were carried out to determine the ohmic losses within the anode layer. The most promising layers were analyzed by measuring the electrochemical behavior to obtain information about catalytic activity and performance. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

2.
The vacuum plasma spraying (VPS) process allows the production of thin solid oxide fuel cells (SOFCs) with low internal resistances. This enables the reduction of the cell operating temperature without a significant decrease in power density. Consequently, the long-term stability of the cells can be improved and low-cost materials can be used. Different material combinations and spray parameter variations were applied to develop thin-film SOFCs, which were plasma sprayed in a consecutive deposition process onto different porous metallic substrates. The use of Laval nozzles, which were developed at the German Aerospace Center (DLR), and the use of conical F4V standard nozzles enable the fabrication of thin gas tight yttria- and scandia-stabilized ZrO2 (YSZ and ScSZ) electrolyte layers and of porous electrode layers with high material deposition rates. The optimization of the VPS parameters has been supported by laser doppler anemometry (LDA) investigations. The development of the plasma-sprayed cells with a total thickness of approximately 100 μm requires an overall electrical and electrochemical characterization process of the single layers and of the completely plasma-sprayed cell assembly. The plasma-sprayed cell layers reveal high electrical conductivities. The plasma-sprayed cells show very good electrochemical performance and low internal resistances. Power densities of 300 to 400 mW/cm2 at low operating temperatures of 750 to 800 °C were achieved. These cells can be assembled to high performance SOFC stacks with active cell areas up to 400 cm2, which can be operated at reduced temperatures and good long-term stability.  相似文献   

3.
The potential of atmospheric plasma spraying (APS) technology has been investigated for the manufacture of anode, electrolyte and cathode of a solid oxide fuel cell. As the substrate a tape-casted FeCr alloy was used. It turned out that all layers can be applied by this technique, however, the APS cathode layer, although applied by suspension plasma spraying led to cells with rather low performance. Much better cell characteristics could be obtained by using screen-printed LSCF cathodes, which do not need any additional thermal treatment.Anode layers with high electrochemical activity were produced by separate injection of NiO and YSZ powders. The manufacturing of gastight electrolyte layers was a key-issue of the present development. As APS ceramic coatings typically contain microcracks and pores their leakage rate is not sufficiently low for SOFC applications.Based on the understanding of the formation of defects during spraying an optimized spraying process was developed which led to highly dense coatings with the appearance of a bulk, sintered ceramic. Open cell voltages above 1 V proofed the low leakage rates of the rather thin (< 50 μm) coatings. With these cells having a screen-printed cathode an output power of 500 mW/cm2 could be achieved at 800 °C.It turned out that the long-term stability of the metal substrate based APS SOFCs was rather poor. The aging of the cells was probably due to interdiffusion of anode and substrate material. Hence, diffusion barrier was applied by APS between substrate and anode. These layers were very effective in reducing the degradation rate. For these cells the output power reached 800 mW/cm2.  相似文献   

4.
This paper describes an approach for an integrated manufacturing process for solid oxide fuel cells. The approach is based on successively depositing the different layers of the cell using plasma deposition processes in a controlled-atmosphere chamber. Cells have been manufactured following this approach with minimal changes in process conditions for the different processes. The cells have been evaluated with regard to their materials characteristics and with regard to their electrical performance. The cell performance has been acceptable, with open circuit voltages of about 1 V and power densities between 325 and 460 mW/cm2. Process modifications to improve the performance further are possible. The described process has the potential for being easily automated.  相似文献   

5.
In one of the present designs of solid oxide fuel cells (SOFC), metallic bipolar plates with gas channels on the surface are used, which consist of a chromium alloy and are manufactured by a time consuming and costly multistep process. To reduce the production time and costs, attempts were made to develop an alternative near-net-shape production method based on RF-induction plasma spray technology. With this process raw powders, as applied for the “conventional” sintering route as well as recycled powders from used bipolar plates, have been applied. The process parameters were adapted to both powders, and the obtained products were qualified. The near-net-shape production requires the formation of a gas channel structure already with the spray process using structured substrates. Therefore, different spray angles occur during the deposition process. The influence of the spray angle on the microstructure of the free-standing parts was investigated. The required gas tightness for grooved profiles with relatively large channel depths and widths can only be achieved using spray angles between 90° and approximately 60°. Then a tilting of the substrate and an adapted design of the gas channel profiles are needed to fulfill the structural requirements for the bipolar plates.  相似文献   

6.
氧化钇稳定的氧化锆(YSZ)因其高热稳定性和良好的氧离子电导率被广泛地作为电解质材料应用于固体氧化物燃料电池(SOFC)。常规的平面SOFC电解质制备技术,如带式流延或丝网印刷,需要在1300℃以上的温度下进行烧结,因此采用传统制备技术获得纳米结构电解质层是一个挑战。等离子喷涂-物理气相沉积(PS-PVD)作为一种新技术由于可以实现气相沉积可以提供快速、低成本的方法来制备纳米致密结构电解质层,可避免传统技术在长时间高温烧结引起的材料晶体结构变化以及相邻电极材料间的化学反应。PS-PVD技术具有与传统大气等离子喷涂(APS)完全不同的沉积机制。本研究采用该技术成功地制备了致密的纳米结构7YSZ薄电解质层。当电解质层厚度为8.7~12.3 μm时,其泄露率为2.24~2.29 10-8 cm4gf-1s-1.  相似文献   

7.
Solid oxide fuel cells (SOFCs) feature the highest energy conversion efficiency of any type of fuel cell yet developed. This article describes SOFC production by means of plasma spraying and presents the resulting SOFC performance. The application of plasma spraying to tubular SOFC production has realized good performance on the order of 40 W or greater in terms of electricity generation per cell stack under standard conditions of 200 mA/cm2.  相似文献   

8.
Preparation of YSZ solid electrolyte by slip casting and its properties   总被引:1,自引:0,他引:1  
Fully stabilized YSZ solid electrolyte was prepared by slip casting. The density was measured according to the Archimedes principle and the linear shrinkage was calculated from measuring the sizes of samples before and after sintering. XRD analysis was conducted to verify the phase structure of both the starting YSZ powder and the prepared YSZ electrolyte. The microstructure of fracture surface and the electrical properties of the samples sintered at different temperatures were investigated via SEM and a complex impedance method, respectively. By comparison of the properties and features among the samples, a slip casting method was established to be a simple way to manufacture high-quality YSZ electrolyte at the sintering temperature of 1550℃ for 3 h, which provides a new approach for YSZ electrolyte with com-plex shapes and mass production.  相似文献   

9.
A planar solid oxide fuel cell (SOFC) consisting of a cell supported with a porous metallic substrate and a metallic separator has been developed. In the fabrication of the cell, anodes and electrolytes were formed on sintered Ni-felt substrates using flame spraying (FS) and atmospheric plasma spraying (APS), respectively. The APS is also applied to form (LaSr)MnO3 protective coatings on the metallic separators. With these metallic cells and separators, a 3 kW-class stack, which consisted of 30 cells (15-cell block×2) was constructed and operated. The active electrode area of the cell was 600 cm2. The stack generated 3.3 kW at 970 °C when the current density was 0.3 Acm−2 and the fuel utilization 50%. It did not show any degradation for the initial 2100 h, but a few cells in the lower 15-cell block became unstable after 2100 h. On the other hand, the upper 15-cell block was stably operated for 3200 h.  相似文献   

10.
A new challenge in the field of solid oxide fuel cells (SOFCs) concerns reducing their operating temperature to 973 K. Apatite ceramics are interesting candidates for SOFC electrolytes due to their high ionic conductivity at this temperature. The present work reports on the fabrication and characterization of La9SrSi6O26.5 coatings obtained by atmospheric plasma spraying with two different plasma spray powers. The microstructure and the composition of the as-sprayed and heat-treated coatings were investigated by several techniques including X-Ray Diffraction, Inductively Coupled Plasma-Atomic Emission Spectroscopy and Scanning Electron Microscopy. The open porosity of the coatings was evaluated by the Archimedean method. It was found that the as-sprayed apatite coatings were composed of an amorphous phase as well as of a crystalline apatite phase, and that they contained chemical heterogeneities resulting from Si volatilization in the high-temperature plasma. Furthermore, a heat treatment rendered it possible to obtain denser, fully crystallized apatite coatings. Ionic conductivity measurements carried out with impedance spectroscopy demonstrated that the conductivity of the apatite coatings - depending on the spraying conditions - increased with sintering.  相似文献   

11.
High-temperature seals for solid oxide fuel cells (SOFC)   总被引:1,自引:0,他引:1  
A functioning solid oxide fuel-cell (SOFC) may require all types of seals, such as metal-metal, metal-ceramic, and ceramic-ceramic. These seals must function at high temperatures between 600 and 900 °C and in the oxidizing and reducing environments of fuels and air. Among the different types of seals, the metal-metal seals can be readily fabricated using metal joining, soldering, and brazing techniques. However, metal-ceramic and ceramic-ceramic seals require significant research and development because the brittle nature of ceramics/glasses can lead to fracture and loss of seal integrity and functionality. Consequently, any seals involving ceramics/glasses also require significant attention and technology development for reliable SOFC operation. This paper is prepared to primarily address the needs and possible approaches for high-temperature seals for SOFC and seals fabricated using some of these approaches. A new concept of self-healing glass seals is proposed for making seals among material combinations with a significant expansion mismatches. This paper was presented at the ASM Materials Solutions Conference & Show held October 18–21, 2004 in Columbus, OH.  相似文献   

12.
Ni-Al2O3 cermet supported tubular SOFC was fabricated by thermal spraying. Flame-sprayed Al2O3-Ni cermet coating plays dual roles of a support tube and an anode current collector. 4.5mol.% yttria-stabilized zirconia (YSZ) and 10mol.% scandia-stabilized zirconia (ScSZ) coatings were deposited by atmospheric plasma spraying (APS) as the electrolyte in present study. The electrical conductivity of electrolyte was measured using DC method. The post treatment was employed using nitrate solution infiltration to densify APS electrolyte layer for improvement of gas permeability. The electrical conductivity of electrolyte and the performance of single cell were investigated to optimize SOFC performance. The electrical conductivity of the as-sprayed YSZ and ScSZ coating is about 0.03 and 0.07 S·cm-1 at 1000 ℃, respectively. The ohmic polarization significantly influences the performance of SOFC. The maximum output power density at 1000 ℃ increases from 0.47 to 0.76 W·cm-2 as the YSZ electrolyte thickness reduces from 100 μm to 40 μm. Using APS ScSZ coating of about 40 μm as the electrolyte, the test cell presents a maximum power output density of over 0.89 W·m-2 at 1000 ℃.  相似文献   

13.
The mechanically mixed NiO/YSZ powder was usually used as the anode material of atmospheric plasma sprayed (APS) solid oxide fuel cells (SOFC). Big particles and the non-uniform distribution of the pores were observed in the resultant anode layer. To overcome the limitations, a method of fabricating anode layer by multi-phase plasma spraying (MPS) was proposed in this paper. The NiO and YSZ powders were delivered into plasma jet by a separate injection, where nitrogen carrier was employed to feed micrometer-sized NiO powder and liquid carrier was to feed submicrometer-sized YSZ powder. Suspension plasma spraying (SPS) was applied to fabricate dense electrolyte layer. The microstructure and composition of coatings were characterized by SEM and EDS. The results showed that finely structured anode layer with small particle size (d ∼ 2 μm) was achieved by the MPS method. The MPS anode layer was porous with the porosity of 32.1% while the APS anode layer was 22.6%. Three kinds of elements (Ni, Y, Zr) were observed in the MPS anode layer and the NiO content was calculated to be 49.6 wt%. In the SPS process, the suspension flow rate was matched to the plasma gas flow rate to obtain proper injection condition.  相似文献   

14.
选用水和乙醇两种溶剂配置悬浮液,研究了分散剂含量对(Ce0.80Gd0.20)O1.9 (GDC)悬浮液粘度的影响和pH值对GDC颗粒Zeta电位的影响。结果表明:水悬浮液优化参数是:PAA含量为2.5 wt.%,pH=10;乙醇悬浮液优化参数为:PAA含量2.0 wt.%,pH=10。采用GDC悬浮液等离子喷涂制备固体氧化物燃料电池电解质层。利用XRD、SEM和电子探针分别分析了喷涂前后GDC的相结构、电解质层微观组织及化学成分。研究表明:GDC喷涂前后没有相结构的变化,乙醇悬浮液得到的电解质层结构更精细,水和乙醇悬浮液得到电解质的孔隙率分别为5.64 %和1.25 %,但是氧化铈有烧损,水和乙醇悬浮液电解质层氧化铈分别烧损了15.8 %和 16.8 %。  相似文献   

15.
The theory of functionally graded material (FGM) was applied in the fabrication process of PEN (Positive-Electrolyte-Negative), the core component of solid oxide fuel cell (SOFC). To enhance its electrochemical performance, the functionally graded PEN of planar SOFC was prepared by atmospheric plasma spray (APS). The cross-sectional SEM micrograph and element energy spectrum of the resultant PEN were analyzed. Its interface resistance was also compared with that without the graded layers to investigate the electrochemical performance enhanced by the functionally graded layers. Moreover, a new process, suspension plasma spray (SPS) was applied to preparing the SOFC electrolyte. Higher densification of the coating by SPS, 1.61%, is observed, which is helpful to effectively improve its electrical conductivity. The grain size of the electrolyte coating fabricated by SPS is also smaller than that by APS, which is more favourable to obtain the dense electrolyte coatings. To sum up, all mentioned above can prove that the hybrid process of APS and SPS could be a better approach to fabricate the PEN of SOFC stacks, in which APS is for porous electrodes and SPS for dense electrolyte.  相似文献   

16.
Thermal and chemical properties of “invert” glasses and glass-ceramics developed for hermetic seals for solid oxide fuel cells are described. The glasses crystallize to form thermally stable pyro- and orthosilicate phases with the requisite thermal expansion match to the Y-stabilized ZrO2 (YSZ) electrolyte. In addition, the glasses bond to Cr-steel substrates at 800–850 °C without forming extensive interfacial reaction products. The thermal expansion characteristics of the glass-ceramics remain essentially unchanged after 28 days at 750 °C. Compositions with lower (≤2 mol%) B2O3 contents exhibit the lowest volatilization rates when exposed to wet forming gas at 750 °C. This paper was presented at the ASM Materials Solutions Conference & Show held October 18–21, 2004 in Columbus, OH.  相似文献   

17.
采用超音速等离子喷涂沉积Ni-C及NiCr-BN可磨耗封严涂层,通过实验对比研究两种涂层的结合强度、表面硬度及在不同冲蚀角下的冲蚀磨损性能.结果表明:NiCr-BN涂层中的润滑相尺寸比Ni-C涂层更为细小;NiCr-BN涂层的结合强度及表面硬度均高于Ni-C涂层;NiCr-BN涂层的抗冲蚀性能要优于Ni-C涂层.  相似文献   

18.
Suspension plasma spray is a promising technique that uses fine particles dispersed in a liquid as feedstock material instead of dry powder as in conventional plasma spraying and has been implemented here to produce layers with appropriate morphologies and microstructures for SOFC applications.This study uses a pressurized gas delivery system to feed the slurry through a homemade two-fluid atomizing nozzle to a conventional plasma torch. The electrodes consist of porous NiO-YSZ as anode and lanthanum nickelate as cathode. The anode and respectively the cathode were deposited onto dense or porous ferritic steel substrates in order to be characterized and optimized. The cell components were examined by scanning electron microscopy (SEM), X-ray diffraction and leakage test. This paper aims at studying the influence of the suspension characteristics (surface tension and viscosity were selected as main parameters), the conditions of injection (nozzle design, gas to liquid ratio, injection angle have been identified as major parameters), the plasma conditions (plasma gas nature and flow rates, spray distance are of major importance) and finally the kinematics on the crystalline phases, the chemical composition (distribution of NiO particles into the layer), the thickness and roughness, the pore ratio and the gas permeability. Then the optimized electrodes have been deposited onto ferritic substrate to perform Open Circuit Voltage and impedance tests at a temperature around 800 °C. This work demonstrated the feasibility for the fabrication of electrodes with interesting performance using suspension plasma spraying technique.  相似文献   

19.
Perovskite-type LaMnO3 powders and coatings have been prepared by a novel technique: reactive suspension plasma spraying (SPS) using an inductively coupled plasma of approximately 40 kW plate power and an oxygen plasma sheath gas. Suitable precursor mixtures were found on the basis of solid state reactions, solubility, and the phases obtained during the spray process. Best results were achieved by spraying a suspension of fine MnO2 powder in a saturated ethanol solution of LaCl3 with a 1 to 1 molar ratio of lanthanum and manganese. A low reactor pressure was helpful in diminishing the amount of corrosive chlorine compounds in the reactor. As-sprayed coatings and collected powders showed perovskite contents of 70 to 90%. After a posttreatment with an 80% oxygen plasma, an almost pure LaMnO3 deposit was achieved in the center of the incident plasma jet. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

20.
In this paper, the effect of particle velocity on the characteristics of atmospheric plasma-sprayed yttria stabilized zirconia was investigated through adjusting auxiliary helium flow rate. The temperature and velocity of in-flight particles were measured with the DPV2000 diagnostic system. The results showed that helium flow rate significantly influenced particle velocity and less distinctly influenced particle temperature. The microstructure of the coatings was characterized by scanning electron microscopy and X-ray diffraction analyzer. The ionic conductivity of the deposits through thickness direction was measured by a potentiostat/galvanostat based on three-electrode assembly approach in a temperature range of 500-1000 °C. The specific gas permeability was estimated through measuring the coating gas flow rate with a home-made experimental setup. The results showed that the gas permeability was improved by increasing the in-flight particle velocity. However, the in-flight particle velocity had little effect on the ionic conductivity of specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号