首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the removal of a broad range of pharmaceuticals during nanofiltration (NF) and reverse osmosis (RO) applied in a full-scale drinking water treatment plant (DWTP) using groundwater. Pharmaceutical residues detected in groundwater used as feed water in all five sampling campaigns were analgesics and anti-inflammatory drugs such as ketoprofen, diclofenac, acetaminophen and propyphenazone, beta-blockers sotalol and metoprolol, an antiepileptic drug carbamazepine, the antibiotic sulfamethoxazole, a lipid regulator gemfibrozil and a diuretic hydrochlorothiazide. The highest concentrations in groundwater were recorded for hydrochlorothiazide (58.6-2548ngL(-1)), ketoprofen (85%). Deteriorations in retentions on NF and RO membranes were observed for acetaminophen (44.8-73 %), gemfibrozil (50-70 %) and mefenamic acid (30-50%). Furthermore, since several pharmaceutical residues were detected in the brine stream of NF and RO processes at concentrations of several hundreds nanogram per litre, its disposal to a near-by river can represent a possible risk implication of this type of treatment.  相似文献   

2.
Bellona C  Drewes JE  Xu P  Amy G 《Water research》2004,38(12):2795-2809
The incomplete rejection of certain pesticides, disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds has been reported during full- and pilot-scale high-pressure membrane applications. Since the removal of these compounds in water and wastewater treatment applications is of great importance where a high product water quality is desired, an understanding of the factors affecting the permeation of solutes in high-pressure membrane systems is needed. In this paper, findings of a comprehensive literature review are reported, targeting membrane rejection mechanisms and factors affecting rejection. The following key solute parameters were identified to primarily affect solute rejection: molecular weight (MW), molecular size (length and width), acid disassociation constant (pKa), hydrophobicity/hydrophilicity (log Kow), and diffusion coefficient (Dp). Key membrane properties affecting rejection that were identified include molecular weight cut-off, pore size, surface charge (measured as zeta potential), hydrophobicity/hydrophilicity (measured as contact angle), and surface morphology (measured as roughness). In addition, feed water composition, such as pH, ionic strength, hardness, and the presence of organic matter, was also identified as having an influence on solute rejection. From the knowledge gained during the literature review, a rejection diagram was proposed, which qualitatively allows prediction of solute rejection if certain solute and membrane properties are known.  相似文献   

3.
The rejection of steroid hormone estrone by nanofiltration (NF) and reverse osmosis (RO) membranes in treated sewage effluent was investigated. Four NF/RO membranes with different materials and interfacial characteristics were utilized. To better understand hormone removal mechanisms in treated effluent, effluent organic matters (EfOM) were fractionated using column chromatographic method with resins XAD-8, AG MP-50 and IRA-96. The results indicate that the presence of EfOM in feed solution could enhance estrone rejection significantly. Hydrophobic acid (HpoA) organic fraction made a crucial contribution to this “enhancement effect”. Hydrophobic base (HpoB) could also improve estrone rejection while hydrophobic neutral (HpoN) and hydrophilic acid (HpiA) with low aromaticity had little effects. The increment in estrone rejection was predominantly attributed to the binding of estrone by EfOM in feed solutions, which led to an increase in molecular weight and appearance of negative charge (for the HpoA case) and thus an increased level of estrone rejection. However, the improvement of estrone rejection by HpoA decreased with increasing calcium ion concentration. The important conclusion of this study is, first, hydrophobic acid macromolecules are recommended to be added into feed water to improve the rejection of trace hormone during NF/RO membrane process, and, second, removal of calcium ions via pretreatment and application of membrane with more negative charge at its interface can greatly intensify this “enhancement effect”.  相似文献   

4.
The rejection of cyclophosphamide (CP) by nanofiltration (NF) and reverse osmosis (RO) membranes from ultrapure (Milli-Q) water and membrane bioreactor (MBR) effluent was investigated. Lyophilization-extraction and detection methods were first developed for CP analysis in different water matrices. Experimental results showed that the RO membrane provided excellent rejection (>90%) under all operating conditions. Conversely, efficiency of CP rejection by NF membrane was poor: in the range of 20-40% from Milli-Q water and around 60% from MBR effluent. Trans-membrane pressure, initial CP concentration and ionic strength of the feed solution had almost no effect on CP retention by NF. On the other hand, the water matrix proved to have a great influence: CP rejection rate by NF was clearly enhanced when MBR effluent was used as the background solution. Membrane fouling and interactions between the CP and water matrix appeared to contribute to the higher rejection of CP.  相似文献   

5.
A hybrid nanofiltration (NF) and reverse osmosis (RO) pilot plant was used to remove the color and contaminants of the distillery spent wash. The feasibility of the membranes for treating wastewater from the distillery industry by varying the feed pressure (0-70 bar) and feed concentration was tested on the separation performance of thin-film composite NF and RO membranes. Color removal by NF and a high rejection of 99.80% total dissolved solids (TDS), 99.90% of chemical oxygen demand (COD) and 99.99% of potassium was achieved from the RO runs, by retaining a significant flux as compared to pure water flux, which shows that membranes were not affected by fouling during wastewater run. The pollutant level in permeates were below the maximum contaminant level as per the guidelines of the World Health Organization and the Central Pollution Control Board specifications for effluent discharge (less than 1,000 ppm of TDS and 500 ppm of COD).  相似文献   

6.
Reverse osmosis (RO) treatment has been found to be effective for a wide range of organics but generally small, polar, uncharged molecules such as N-nitrosodimethylamine (NDMA) can be poorly rejected. The rejection of seven N-nitrosoalkylamines with molecular masses in the range of 78-158Da, including NDMA, N-nitrosodiethylamine (NDEA), N-nitrosomethylethylamine (NMEA), N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip) by three commercial brackish-water reverse osmosis membranes was studied in flat-sheet cells under cross-flow conditions. The membranes used were ESPA3 (Hydranautics), LFC3 (Hydranautics) and BW-30 (Dow/Filmtec), commonly used in water reuse applications. The effects of varying ionic strength and pH, dip-coating membranes with PEBAX 1657, a hydrophilic polymer, and artificial fouling with alginate on nitrosamine rejection were quantified. Rejection in deionized (DI) water increased with molecular mass from 56 to 70% for NDMA, to 80-91% for NMEA, 89-97% for NPyr, 92-98% for NDEA, and to beyond the detection limits for NPip, NDPA and NDBA. For the nitrosamines with quantifiable transmission, linear correlations (r(2)>0.97) were found between the number of methyl groups and the log(transmission), with factor 0.35 to 0.55 decreases in transmission per added methyl group. A PEBAX coating lowered the ESPA3 rejection of NDMA by 11% but increased the LFC3 and BW30 rejection by 6% and 15%, respectively. Artificially fouling ESPA3 membrane coupons with 170g/m(2) alginate decreased the rejection of NDMA by 18%. A feed concentration of 100mM NaCl decreased rejection of NDMA by 15% and acidifying the DI water feed to pH=3 decreased the rejection by 5%, whereas increasing the pH to 10 did not have a significant (p<0.05) effect.  相似文献   

7.
Biofilm accumulation in nanofiltration and reverse osmosis membrane elements results in a relative increase of normalised pressure drop (ΔNPD). However, an increase in ΔNPD is not exclusively linked to biofouling. In order to quantify biofouling, the biomass parameters adenosine triphosphate (ATP), total cell count and heterotrophic plate count in membrane elements were investigated during membrane autopsies and compared with ΔNPD in test rigs and 15 full scale investigations with different types of feed water. The combination of biomass related parameters ATP and total cell count in membrane elements seem to be suitable parameters for diagnosis of biofouling, whereas plate counts were not appropriate to assess biofouling. The applied ΔNPD measurement was too insensitive for early detection of fouling. Measurements of biological parameters in the water were shown to be not appropriate in quantifying biofouling. Evidently, there is a need for a practical tool, sensitive pressure drop data and systematic research.  相似文献   

8.
Micromixers, UV-curable epoxy traces printed on the surface of a reverse osmosis membrane, were tested on a cross-flow system to determine their success at reducing biofouling. Biofouling was quantified by measuring the rate of permeate flux decline and the median bacteria concentration on the surface of the membrane (as determined by fluorescence intensity counts due to nucleic acid stains as measured by hyperspectral imaging). The micromixers do not appear to significantly increase the pressure needed to maintain the same initial permeate flux and salt rejection. Chevrons helped prevent biofouling of the membranes in comparison with blank membranes. The chevron design controlled where the bacteria adhered to the membrane surface. However, blank membranes with spacers had a lower rate of permeate flux decline than the membranes with chevrons despite having greater bacteria concentrations on their surfaces. With better optimization of the micromixer design, the micromixers could be used to control where the bacteria will adhere to the surface and create a more biofouling resistant membrane that will help to drive down the cost of water treatment.  相似文献   

9.
Tran T  Bolto B  Gray S  Hoang M  Ostarcevic E 《Water research》2007,41(17):3915-3923
The fouling of a spiral wound reverse osmosis (RO) membrane after nearly 1 year of service in a brackish water treatment plant was investigated using optical and electron microscopic methods, Fourier transform infrared spectroscopy (FTIR) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Both the top surface and the cross-section of the fouled membrane were analysed to monitor the development of the fouling layer. It has been found that the extent of fouling was uneven across the membrane surface with regions underneath or in the vicinity of the strands of the feed spacer being more severely affected. Fouling appeared to have developed through different stages. In particular, it consisted of an initial thin fouling layer of an amorphous matrix with embedded particulate matter. The amorphous matrix comprised organic-Al-P complexes and the particulate matter was mostly aluminium silicates. Subsequently, as the fouling layer reached a thickness of about 5-7microm, further amorphous material, which is suggested to include extracellular polymeric substances such as polysaccharides, started to deposit on top of the existing fouling layer. This secondary amorphous material did not seem to contain any particulate matter nor any inorganic elements within it, but acted as a substrate upon which aluminium silicate crystals grew exclusively in the absence of other foulants, including natural organic matter (NOM).  相似文献   

10.
11.
This study aims to provide longitudinal and spatial insights to the rejection of N-nitrosamines by reverse osmosis (RO) membranes during sampling campaigns at three full-scale water recycling plants. Samples were collected at all individual filtration stages as well as at a cool and a warm weather period to elucidate the impact of recovery and feed temperature on the rejection of N-nitrosamines. N-nitrosodimethylamine (NDMA) was detected in all RO feed samples varying between 7 and 32 ng/L. Concentrations of most other N-nitrosamines in the feed solutions were determined to be lower than their detection limits (3–5 ng/L) but higher concentrations were detected in the feed after each filtration stage. As a notable exception, in one plant, N-nitrosomorpholine (NMOR) was observed at high concentrations in RO feed (177–475 ng/L) and permeate (34–76 ng/L). Overall rejection of NDMA among the three RO systems varied widely from 4 to 47%. Data presented here suggest that the feed temperature can influence rejection of NDMA. A considerable variation in NDMA rejection across the three RO stages (14–78%) was also observed. Overall NMOR rejections were consistently high ranging from 81 to 84%. On the other hand, overall rejection of N-nitrosodiethylamine (NDEA) varied from negligible to 53%, which was considerably lower than values reported in previous laboratory-scale studies. A comparison between results reported here and the literature indicates that there can be some discrepancy in N-nitrosamine rejection data between laboratory- and full-scale studies probably due to differences in water recoveries and operating conditions (e.g. temperature, membrane fouling, and hydraulic conditions).  相似文献   

12.
Rejection of micropollutants by clean and fouled forward osmosis membrane   总被引:1,自引:0,他引:1  
As forward osmosis (FO) gains attention as an efficient technology to improve wastewater reclamation processes, it is fundamental to determine the influence of fouling in the rejection of emerging contaminants (micropollutants). This study focuses on the rejection of 13 selected micropollutants, spiked in a secondary wastewater effluent, by a FO membrane, using Red Sea water as draw solution (DS), differentiating the effects on the rejection caused by a clean and fouled membrane. The resulting effluent was then desalinated at low pressure with a reverse osmosis (RO) membrane, to produce a high quality permeate and determine the rejection with a coupled forward osmosis - low pressure reverse osmosis (FO-LPRO) system. When considering only FO with a clean membrane, the rejection of the hydrophilic neutral compounds was between 48.6% and 84.7%, for the hydrophobic neutrals the rejection ranged from 40.0% to 87.5%, and for the ionic compounds the rejections were between 92.9% and 96.5%. With a fouled membrane, the rejections were between 44.6% and 95.2%, 48.7%-91.5% and 96.9%-98.6%, respectively. These results suggest that, except for the hydrophilic neutral compounds, the rejection of the micropollutants is increased by the presence of a fouling layer, possibly due to the higher hydrophilicity of the FO fouled membrane compared to the clean one, the increased adsorption capacity of hydrophilic compounds and reduced mass transport capacity, membrane swelling, and the higher negative charge of the membrane surface, related to the foulants composition, mainly NOM acids (carboxylic radicals) and polysaccharides or polysaccharide-like substances. However, when coupled with RO, the rejections in both cases increased above 96%. The coupled FO-LPRO system was an effective double barrier against the selected micropollutants.  相似文献   

13.
Kang GD  Cao YM 《Water research》2012,46(3):584-600
With the rapidly increasing demands on water resources, fresh water shortage has become an important issue affecting the economic and social development in many countries. As one of the main technologies for producing fresh water from saline water and other wastewater sources, reverse osmosis (RO) has been widely used so far. However, a major challenge facing widespread application of RO technology is membrane fouling, which results in reduced production capacity and increased operation costs. Therefore, many researches have been focused on enhancing the RO membrane resistance to fouling. This paper presents a review of developing antifouling RO membranes in recent years, including the selection of new starting monomers, improvement of interfacial polymerization process, surface modification of conventional RO membrane by physical and chemical methods as well as the hybrid organic/inorganic RO membrane. The review of research progress in this article may provide an insight for the development of antifouling RO membranes and extend the applications of RO technology in water treatment in the future.  相似文献   

14.
Forward osmosis for concentration of anaerobic digester centrate   总被引:8,自引:0,他引:8  
The nutrient-rich liquid stream produced during the dewatering of digested biomass (i.e., the centrate) is commonly mixed with the influent raw wastewater at wastewater treatment facilities. This increases the nitrogen and phosphorus loading on biological processes, increases operating costs, and in some cases, results in increased nutrient concentrations in the final effluent. Forward osmosis (FO) is a membrane treatment process that was investigated at bench scale to determine its feasibility to concentrate centrate under both batch and continuous operating conditions. The continuous bench-scale system used FO as pretreatment for reverse osmosis (RO). Results demonstrated that high water flux and high nutrient rejection could be achieved. The combined FO/RO process exhibited sustainable flux over an extended time period. A mathematical model was developed in order to determine the specific energy, power, and membrane area requirements for a larger-scale centrate treatment process. Modeling results indicated that to optimize power and membrane area requirements, the system should be operated at approximately 70% water recovery.  相似文献   

15.
Rejection of trace organic compounds, including disinfection by-products (DBPs) and pharmaceutical active compounds (PhACs), by high-pressure membranes has become a focus of public interest internationally in both drinking water treatment and wastewater reclamation/reuse. The ability to simulate, or even predict, the rejection of these compounds by high-pressure membranes, encompassing nanofiltration (NF) and reverse osmosis (RO), will improve process economics and expand membrane applications. The objective of this research is to develop a membrane transport model to account for diffusive and convective contributions to solute transport and rejection. After completion of cross-flow tests and diffusion cell tests with target compounds, modeling efforts were performed in accordance with a non-equilibrium thermodynamic transport equation. Comparing the percentages of convection and diffusion contributions to transport, convection is dominant for most compounds, but diffusion is important for more hydrophobic non-polar compounds. Convection is also more dominant for looser membranes (i.e., NF). In addition, higher initial compound concentrations and greater J(0)/k ratios contribute to solute fluxes more dominated by convection. Given the treatment objective of compound rejection, compound transport and rejection trends are inversely related.  相似文献   

16.
Drewes JE  Reinhard M  Fox P 《Water research》2003,37(15):3612-3621
Microfiltration (MF) followed by reverse osmosis (RO) and soil-aquifer treatment (SAT) are the two principal technologies considered for indirect potable reuse of wastewater. This study, conducted at the Northwest Water Reclamation Plant, Mesa (Arizona), evaluated MF/RO and SAT (>6 months residence time) treated tertiary effluent with respect to organics removal. Effluent organic matter was characterized as total organic carbon (TOC), by UV absorbance (UVA), solid-state carbon-13 nuclear magnetic resonance spectroscopy, and size exclusion chromatography. Several trace organic micropollutants, including EDTA, NTA, and alkylphenolethoxylate residues, were analyzed by GC/MS. The study revealed that final TOC concentrations of MF/RO and SAT are 0.3 and 1.0 mgl(-1), respectively. Based on the characterization techniques used, the character of bulk organics present in final SAT water resembles the character of natural organic matter present in drinking water. Depending on the molecular weight cut-off, RO membranes can efficiently reject high molecular weight organic matter (characterized as humic and fulvic acids). However, approximately 40-50 percent of the remaining TOC in permeates consists of low molecular weight acids and neutrals representing a molecular weight range of approximately 500Da and less. In the SAT treated effluent, EDTA and APECs were removed to approximately 4.3 and 0.54 microg/l, respectively, but were below the detection limit in the MF/RO treated effluent.  相似文献   

17.
The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L1 and a rejected flux highly concentrated (in the range of 16–25 mg L1 and 18–32 mg L1 of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L1 of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants.  相似文献   

18.
Zhao C  Gu P  Cui H  Zhang G 《Water research》2012,46(1):218-226
Organic pollutants in reverse osmosis (RO) concentrates from wastewater reclamation are mainly comprised of low molecular weight biorefractory compounds. Generally, advanced oxidation methods for oxidizing these organics require a relatively high level of energy consumption. In addition, conventional adsorption removal methods require a large dose of activated carbon. However, the dose can be reduced if its full adsorption capacity can be used. Therefore, the combined technology of powdered activated carbon (PAC) adsorption and microfiltration (MF) membrane filtration was studied to develop a countercurrent two-stage adsorption process. A PAC accumulative adsorption prediction method was proposed based on the verification of a PAC multi-stage adsorption capacity equation. Moreover, the prediction method was amended for a more accurate prediction of the effluent quality because adsorption isotherm constants were affected by the initial adsorbate concentration. The required PAC dose for the accumulative countercurrent two-stage adsorption system was 0.6 g/L, whereas that of the conventional adsorption process was 1.05 g/L when the dilution factor(F) was 0.1 and the COD and DOC removal rates were set to 70% and 68.1%, respectively. Organic pollutants were satisfactorily removed with less consumption of PAC. Effluent from this combined technology can be further reclaimed by an RO process to improve the overall recovery rate to between 91.0% and 93.8% with both economic and environmental benefits.  相似文献   

19.
Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design. Two distinct branches of reverse osmosis desalination have emerged: seawater reverse osmosis and brackish water reverse osmosis. Differences between the two water sources, including foulants, salinity, waste brine (concentrate) disposal options, and plant location, have created significant differences in process development, implementation, and key technical problems. Pretreatment options are similar for both types of reverse osmosis and depend on the specific components of the water source. Both brackish water and seawater reverse osmosis (RO) will continue to be used worldwide; new technology in energy recovery and renewable energy, as well as innovative plant design, will allow greater use of desalination for inland and rural communities, while providing more affordable water for large coastal cities. A wide variety of research and general information on RO desalination is available; however, a direct comparison of seawater and brackish water RO systems is necessary to highlight similarities and differences in process development. This article brings to light key parameters of an RO process and process modifications due to feed water characteristics.  相似文献   

20.
The removal of bacteriophage MS2 and fluorescent-dyed polystyrene microspheres with intact and purposely compromised spiral-wound RO membrane elements was investigated. MS2 rejection with intact membrane elements was >99.9995%. A model developed for data evaluation revealed that the advective passage of MS2 through imperfections of intact membrane elements was <2 x 10(-5)% of the overall product water flow produced. The advective passage of MS2 and microspheres through a pinhole induced in one of the elements was 0.05-0.1% of the overall product water flow. Prolonged testing of both intact and compromised elements resulted in increased MS2 rejection corresponding to advective MS2 passage through membrane imperfections of <3 x 10(-7)% of the overall product water flow. The permeate flow rate obtained with an element with a larger pinhole was 5-13% greater than that of the intact element, and the corresponding rejection of MS2 and microspheres was similar to that observed for sodium chloride. The use of a cracked o-ring in the connection of the permeate tube to the element vessel end-cup resulted in advective passage of MS2 through the crack of <0.0001% of the overall permeate flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号