首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Commercial purity aluminum AA1050 was subjected to equal channel angular extrusion (ECAE) that resulted in an ultrafine-grained (UFG) microstructure with an as-received grain size of 0.35 μm. This UFG material was then annealed to obtain microstructures with grain sizes ranging from 0.47 to 20 μm. Specimens were compressed at quasi-static, intermediate, and dynamic strain rates at temperatures of 77 and 298 K. The mechanical properties were found to vary significantly with grain size, strain rate, and temperature. Yield stress was found to increase with decreasing grain size, decreasing temperature, and increasing strain rate. The work hardening rate was seen to increase with increasing grain size, decreasing temperature, and increasing strain rate. The influence of strain rate and temperature is most significant in the smallest grain size specimens. The rate of work hardening is also influenced by strain rate, temperature, and grain size with negative rates of work hardening observed at 298 K and quasi-static strain rates in the smallest grain sizes and increasing rates of work hardening with increasing loading rate and grain size. Work hardening behavior is correlated with the substructural evolution of these specimens.  相似文献   

2.
利用永磁搅拌近液相线铸造和普通铸造方法制备不同晶粒尺寸的2024铝合金铸锭,利用Gleeble-1500热模拟试验机研究初始晶粒尺寸对不同压缩变形条件下2024铝合金的热变形行为和变形后显微组织的影响。研究表明:2024铝合金的热变形行为依赖于变形条件和初始组织。初始晶粒尺寸对流变应力的影响是:当应变速率小于0.1 s~(-1)时,流变应力随晶粒尺寸减小而减少;当应变速率为10 s~(-1)时,流变应力随晶粒尺寸减小而增大。降低变形温度会弱化晶粒尺寸对流变应力的影响。热压缩流变应力随应变速率增大而增大,随变形温度升高而减小。应变速率为10 s~(-1)时,热压缩应力应变曲线呈现周期性波动;只在粗晶2024铝合金中发现变形剪切带。  相似文献   

3.
Accumulative roll bonding (ARB) was successfully used as a severe plastic deformation method to produce Al-SiC nanocomposite sheets. The effects of process pass and amount of SiC content on microstructure and mechanical properties of the composites are investigated. As expected, production of ultrafine grain structures by the ARB process as well as nanosize particulate reinforcements in the metal matrix composite (MMC) resulted in excellent mechanical properties. According to the results of the tensile tests, it is shown that the yield and tensile strengths of the composite sheet increased with the number of ARB cycles without saturation at the last cycles. Scanning electron microscopy (SEM) revealed that the particles had a random and uniform distribution in the matrix by the last ARB cycles, and strong mechanical bonding takes place at the interface of the particle matrix. Transmission electron microscopy (TEM) and the corresponding selected area diffraction (SAD) demonstrate ultrafine grains with large misorientation in the structure. It is also shown that by increasing the volume fraction of particles up to 3.5 vol pct, the yield and tensile strengths of the composite sheets increased more than 1.3 and 1.4 times the accumulative roll-bonded aluminum sheets, respectively.  相似文献   

4.
The grain size dependence of flow stress at room temperature in the regime of small strains (0–2%) has been examined in as-annealed and 2% pre-strained and subsequently annealed specimens of 316L stainless steel. Grain sizes in the range of 3.4–22.4 μm were considered. The stress-strain curves exhibit linear hardening characteristic beyond 0.2% plastic strain. The analysis of the Hall-Petch parameters show a linear increase in σ0(ϵ) and a linear decrease in K(ϵ) with strain in the as-annealed specimens. The increase in σ0(ϵ) has been associated with both, the work-hardening processes in the grain interior and the long range stress field of extrinsic grain boundary dislocations (EGBDs). The EGBDs also act as sites of stress concentration thereby making it easier to generate dislocations in the vicinity of grain boundaries. Therefore, K(ϵ) which is function of the stress required to generate dislocations decreases with increasing strain. The observed drop in flow stress as a result of annealing of pre-stained specimens at 800°C has been related with the annihilation of dislocations at and in the vicinity of grain boundaries. Annealing at 550°C (this temperature is sufficient for the delocalization of the cores of EGBDs) does not have any significant effect on the density of dislocation at and in the vicinity of grain boundaries. Therefore, no significant change in the flow stress was obsereved.  相似文献   

5.
The stretch formability of ultrafine-grained (UFG) interstitial-free steel (IF-steel) produced by equal-channel angular extrusion/pressing (ECAE/P) via various strain paths was investigated with a miniaturized Erichsen test. A coarse-grained (CG) sample demonstrated high formability with an Erichsen index (EI) of 4.5 mm. Grain refinement by ECAE decreased the formability, but increased the required punch load (F EI) depending on the applied strain paths. The EI values were 0.35, 2.90, and 3.91 mm for 8A-, 8Bc-, and 8C-processed samples, respectively. Decrease in the biaxial stretch formability was attributed to the limited strain-hardening capacity of the UFG microstructure. Also, the grain morphology of the UFG microstructure was found to be very influential on stretch formability. Heavily elongated grain morphology in the 8A-processed microstructure resulted in the lowest formability due to the increased cracking tendency through elongated grain boundaries. However, the UFG microstructures with equiaxed grains obtained after 8C and 8Bc ECAE resulted in better formability compared to 8A. The UFG microstructure reduced the roughness (orange peel effect) of the free surface of the biaxial stretched samples by decreasing the non-uniform grain flow leading to the so-called orange peel effect. It should be noted that the strength and ductility values gained from uniaxial tensile tests are not comparable directly to the EI and F EI values determined from the Erichsen tests. Finally, it is important to emphasize that the UFG microstructure produced by a suitable strain path leading to equiaxed grains below 1 μm could be highly deformed even under multiaxial stress conditions.  相似文献   

6.
In this paper, sheets of commercial purity Al were fabricated by the accumulative roll-bonding (ARB) method up to six cycles. To increase the shear deformation, no lubricant was used during the ARB processing and the samples were carried out for ARB processing without any preheat treatment. One interesting finding is that the ductility and strength both increased during the first several cycles of ARB processing. It is proposed that the initial rolling texture might play an important part in the subsequent ARB processing since the original Al sheets for ARB processing have not been subjected to any annealing. The microstructures of the specimens after each ARB cycle were investigated by transmission electron microscopy and correlated with the mechanical properties.  相似文献   

7.
8.
A fully annealed AA8011 aluminum alloy sheet containing a number of large particles (∼5 μm) was severely deformed up to an equivalent strain of 12 by an accumulative roll-bonding (ARB) process. The texture evolution during the ARB process was clarified, along with the microstructure. The ARB-processed aluminum alloy sheets had a different texture distribution through the sheet thickness, due to the high friction between the roll and the material during the ARB process. The shear textures composed of {001} 〈110〉 and {111} 〈110〉 orientations developed at the sheet surface, while the rolling textures, including Cu {112} 〈111〉 and Dillamore {4,4,11} 〈11,11,8〉 orientations, developed at the sheet center. The textural change from a shear texture to a rolling texture at the sheet center during the ARB process contributed to an increase in the fraction of high-angle boundaries. Also, a large number of second-phase particles in the AA8011 alloy sheets weakened the texture. Up to the medium strain range (below ɛ=6.4), relatively weak textures developed, due to the inhomogeneous deformation around the second-phase particles; after the strain of 6.4, strong rolling-texture components, such as the Dillamore and Cu orientations, developed. This remarkable textural change can be explained by the reprecipitation of fine particles in grain interiors.  相似文献   

9.
The flow behaviour of Al–SiC nanocomposites prepared by mechanical milling and hot powder extrusion methods was studied at different temperatures (350–500°C) and strain rates (0.005–0.5 s?1). The flow of the Powder metallurgy nanocomposites exhibited a peak stress followed by a dynamic flow softening behaviour. It was shown that mechanical milling increased high-temperature strain rate sensitivity of ultrafine-grained (UFG) aluminium while decreasing its flow dependence to temperature. Constitutive analysis of the hot deformation process by Zener–Hollomon parameter (Z) also indicated a remarkable increase in the deformation activation energy (about 40%). Likewise, SiC nanoparticles (up to 2vol.-%) were shown to contribute in the high-temperature strengthening of UFG aluminium with a significant effect on its thermal stability. The findings were explained based on the pinning effect of hard nanoparticles on grain boundaries and mobile dislocations as well as microstructure stabilisation at elevated temperatures.  相似文献   

10.
Multilayered Ti/Al/Nb composites were produced by the accumulative roll bonding (ARB) process utilizing pure Ti, Al, and Nb element sheets. Up to four cycles of ARB were applied to the composites. The microstructure and texture evolution on the Nb phase were studied by X-ray diffraction (XRD), transmission electron microscopy, scanning electron microscopy, and electron backscattered diffraction. Nb and Ti layers necked and fractured as the number of ARB passes increased. After four ARB cycles, a nearly homogeneous distribution of Nb and Ti layers in Al matrix was achieved. As-received Nb sheet exhibited a fully lamellar structure and had a strong cold-rolling texture. After subjecting to ARB, slight grain refining was observed and the high-angle boundary fraction was increased. The intensity of the α-fiber was weakened, while that of the γ-fiber was strengthened during ARB. The texture evolution was attributed to partial recrystallization during the ARB process as a result of adiabatic heating.  相似文献   

11.
It is possible to increase significantly the uniform elongation achieved in the uniaxial tension of commercial purity aluminum by accelerating the testing rate. This effect is linked to a significant rate sensitivity of strain hardening. However, very little increase in the strains associated with the final stages of localization in sheet specimens were achieved by this means. The importance of the change in strain rate and path on local necking has been investigated by introducing path changes of appropriate magnitudes in tubular tensile specimens by internal pressurization. The path change led to a decrease in strain-hardening rate which was not compensated for by an increase in strain rate. The potential consequences of this effect upon ductility in sheets are significant and limit the potential usefulness of any rate sensitivity of strain hardening in increasing formability.  相似文献   

12.
It is possible to increase significantly the uniform elongation achieved in the uniaxial tension of commercial purity aluminum by accelerating the testing rate. This effect is linked to a significant rate sensitivity of strain hardening. However, very little increase in the strains associated with the final stages of localization in sheet specimens were achieved by this means. The importance of the change in strain rate and path on local necking has been investigated by introducing path changes of appropriate magnitudes in tubular tensile specimens by internal pressurization. The path change led to a decrease in strain-hardening rate which was not compensated for by an increase in strain rate. The potential consequences of this effect upon ductility in sheets are significant and limit the potential usefulness of any rate sensitivity of strain hardening in increasing formability.  相似文献   

13.
超细晶工业纯钛热变形流动应力特征研究   总被引:1,自引:0,他引:1  
在室温下以等径弯曲通道变形(ECAP)技术制备超细晶工业纯钛,采用Gleeble-1500热模拟实验机对粗晶和超细晶工业纯钛在热变形条件下的流动应力特征进行了研究。结果表明:超细晶工业纯钛在热压缩过程中,热压缩条件不同流动应力变化规律会有所差异。在较低应变速率条件下,随变形程度的增加,流动应力增加到峰值后开始下降,呈现明显的动态再结晶特征;而在较高应变速率下,呈现稳态流变特征。此外,与粗晶工业纯钛相比,超细晶工业纯钛的屈服应力显著增强。  相似文献   

14.
The compressive deformation behaviors of 300M high strength steel were investigated over a wide range of temperatures (850- 1200 C) and strain rates (0. 001- 10 s^- 1 ) on a Gleeble-3800 thermo-mechanical simulator. The measured flow stress was modified by the corrections of the friction and the temperature compensations, which nicely reflect negative effects of the friction and temperature on the flow stress. The corrected stress-strain curves were the dynamic recrystallization type on the conditions of higher deformation temperature and lower strain rate. Flow stress increases with the increase of strain rate at the same deformation temperature and strain. By contrast, flow stress decreases with the increase of temperature at the same strain rate and strain. Dependence of the peak stress on temperature and strain rate for 300M steel is described by means of the conventional hyperbolic sine equation. By re gression analysis, the activation energy (Q) in the whole range of deformation temperature is determined to be 367. 562 kJ/mol. The effects of the temperature and the strain rate on mierostructural evolution are obvious. With the increase of the deformation temperature and the decrease of the strain rate, the original austenite grain sizes of 300M steel increase. At the same time, the corrected flow stress curves more accurately determine the evolution of the microstrueture.  相似文献   

15.
The ultrafine-grained (UFG) microstructures of Ni-free Co-29Cr-6Mo (mass pct) alloys, which are designed for biomedical applications, have been successively fabricated by the conventional hot-forging process. The grain size decreased with increasing hot-forging reduction, and the equiaxed UFG structures with a mean grain size less than 1 ??m were obtained in 83?pct (true strain of 1.8) hot-forged specimens. Significant grain refinement drastically enhanced tensile strength; dislocations residual in the grains also play a crucial role for strengthening of the UFG-structured specimen. The elongation decreased with the reduction in grain size. However, we revealed that the addition of nitrogen, which is one of the nontoxic ?? phase (face-centered cubic [fcc] structure) stabilizer, improves the ductility of the UFG alloys remarkably with maintaining high strength. It was deduced that the enhanced ductility in the UFG material by N doping was related to constituent phase and strain-induced martensitic transformation behavior: the addition of nitrogen eliminated athermal ?? martensite detrimental to tensile elongation, and strain-induced martensitic transformation effectively increased work-hardening rate to avoid the plastic instability at the early stage of deformation. The present method characterized by ultragrain refinement in conjunction with nitrogen addition to stabilize the ?? phase can provide a potent strategy to obtain superior combination of high strength and adequate ductility.  相似文献   

16.
The effects of gage length, width measurement locations, and specimen geometry on plastic strain ratio have been investigated for the AA8011 aluminum alloy and interstitial-free (IF) steel sheets. The specimens were ASTM E 517 to 92a subsize, type A, and type A alternative with, respectively, 37.5, 76, and 57 mm reduced parallel sections and with different fillet radii. In each specimen type, there were differences in axial strains of gage marks and changes in width strain over the reduced parallel section, which depend on the applied axial strain, reduced parallel section legth, and fillet radius. Therefore, the magnitudes of the calculated R-values depend upon gage length, width measurement location, axial strain, and specimen geometry. These dependencies were more pronounced in the high R-value IF steel sheet relative to the low R-value AA8011 aluminum alloy sheet. The dependencies of R-value on gage length and width measurement location are negligible in all AA8011 specimens, while in IF specimens, these dependencies can be neglected only for type A specimens with 12.5-mm fillet radius. It is concluded that the observed differences in the measured R-values for specimens with different geometries can be attributed to the constraints imposed by the shoulders, which affect the width strain measurements and the resulting R-values.  相似文献   

17.
In this study, ultrafine-grained AA5050 sheets were fabricated by the accumulative roll bonding (ARB) process. Transmission electron microscope observations showed that at the early stage of ARB, the grain size was reduced in the normal direction and became elongated along the rolling direction. The elongated grains were cut out by dense dislocations, which then tangled and condensed, resulting in the formation of dislocation cells. As the deformation proceeded, the dislocation cells evolved to sub-grain boundaries and then grain boundaries. The ultrafine-grained microstructure was obtained via four ARB cycles. The tensile tests at 473 K and 523 K (200 °C and 250 °C) showed large elongations for strain rates of 1 × 103 s?1 and 1 × 104 s?1.  相似文献   

18.
Engineering stress-control ratcheting behavior of a titanium-stabilized interstitial free steel has been studied under different combinations of mean stress and stress amplitude at a stress rate of 250 MPa s?1. Tests have been done up to 29.80 pct true ratcheting strain evolution in the specimens at three maximum stress levels. It is observed that this amount of ratcheting strain is more than the uniform tensile strain at a strain rate of 10?3 s?1 and evolves without showing tensile instability of the specimens. In the process of ratcheting strain evolution at constant maximum stresses, the effect of increasing stress amplitude is found to be more than that of increasing the mean stress component. Further, the constant maximum stress ratcheting test results reveal that the number of cycles (N) required for 29.80 pct. true ratcheting strain evolution exponentially increases with increase of stress ratio (R). Post-ratcheting tensile test results showing increase of strength and linear decrease in ductility with increasing R at different constant maximum stresses indicate that stress parameters used during ratcheting tests influence the size of the dislocation cell structure of the steel even with the same amount of ratcheting strain evolution. It is postulated that during ratcheting fatigue, damage becomes greater with the increase of R for any fixed amount of ratcheting strain evolution at constant maximum stress.  相似文献   

19.
A model is proposed to explain the effect of the severe plastic deformation (SPD) temperature on the diffusion properties of the grain boundaries in ultrafine-grained (UFG) metals and alloys. It is shown that an increase in the SPD temperature in UFG metals leads to an increase in the activation energy of grainboundary diffusion from (3–5)k B T m, which corresponds to the diffusion parameters of nonequilibrium grain boundaries, to (8–10)k B T m, which corresponds to the diffusion parameters of equilibrium grain boundaries (k B is the Boltzmann constant, T m is the melting temperature). The dependence of the activation energy of grain-boundary diffusion on the SPD temperature is found to be determined by the kinetics of the competing processes of defect accumulation at grain boundaries and the diffusion accommodation of defects.  相似文献   

20.

The tensile mechanical behavior and spall response of a selective laser melted (SLM) 17-4 precipitation-hardening (PH) stainless steel were studied comprehensively through tensile test, plate impact experiment and microstructure characterization in the present study. The results reveal a steel with significant strain rate dependence on the tensile mechanical behavior and spall response. As the strain rate increases, the tensile yield stress increases, but there is no monotonic variation trend for the peak stress; grain structure remains unchanged first and then becomes fine; high-angle grain boundaries (HAGBs) increase; the martensite phase decreases at first and then increases. There is a close correlation among impact velocity, strain rate, peak stress, Hugoniot elastic limit (HEL) and spall strength. Strain rate, peak stress and HEL increase, while spall strength remains almost constant with the increase of impact velocity. As impact velocity increases, grain structure becomes fine, HAGBs increase and the martensite phase increases. The significant phase transformation is responsible for the tensile mechanical behavior and spall response, and the temperature rise was calculated to analyze its effect on phase transformation. Whether the preferred orientations are along the building direction or tensile direction is dependent on strain rate. Tensile and spallation specimens exhibit the ductile fracture mode and the damage originates from voids. It is interesting that the voids always tend to nucleate at melt pool boundaries. A spall damage evolution model is illustrated to describe the damage process.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号