首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
光学微谐振腔是指尺度可与光波长比拟且具有高品质因数Q的谐振腔.目前人们制备的光学微腔主要有F-P谐振腔、小球、微盘、微环等.实验中制备光学微谐振腔的关键是如何提高其Q值.到目前为止,人们制备光学微盘的方法主要是半导体刻蚀、聚合物光刻两种方法.我们把溶胶-凝胶技术引入到微盘的制作中来,结合光刻工艺,得到了数十微米直径微盘的列阵.在制备微盘的过程中掺入激光染料若丹明B,用来研究所制备微盘的光学性质.在532 nm激光抽运下,观察到回廊耳语模式,实验所得模式的峰位与理论值相符.利用实验数据估算所制备的微盘谐振腔Q值约为900.实验结果表明,溶胶-凝胶技术和光刻工艺结合,是一种用于制备光学微盘简单可行的方法.(OC23)  相似文献   

2.
为了设计一种高品质因子的光子晶体微腔和研究单缺陷光子晶体微腔谐振模波长随晶格常数的变化规律,使用时域有限差分法(difference time-domain method)和基于Baker算法的Padé近似方法计算了半导体材料上空气孔阵列光子晶体微腔的谐振模波长和品质因子.得到的新型光子晶体微腔的品质因子达246510,单缺陷光子晶体微腔模波长随晶格常数a和孔半径r的近似为线性变化关系:当孔半径r为一常数时,表现为晶格常数改变1nm,谐振波长变化约3nm,为实际制作光子晶体微腔激光器提供了理论指导.  相似文献   

3.
为了设计一种高品质因子的光子晶体微腔和研究单缺陷光子晶体微腔谐振模波长随晶格常数的变化规律,使用时域有限差分法(difference time-domain method)和基于Baker算法的Padé近似方法计算了半导体材料上空气孔阵列光子晶体微腔的谐振模波长和品质因子.得到的新型光子晶体微腔的品质因子达246510,单缺陷光子晶体微腔模波长随晶格常数a和孔半径r的近似为线性变化关系:当孔半径r为一常数时,表现为晶格常数改变1nm,谐振波长变化约3nm,为实际制作光子晶体微腔激光器提供了理论指导.  相似文献   

4.
光学微腔中偶极子自发辐射受到空间和频谱调制,能实现自发辐射增强或抑制效应,而且其有源区体积可以非常小,有利于极低阈值工作和极高的调制速率.在过去的二十多年来,垂直腔面发射激光器、回音壁模式(whispering-gallery mode)微腔激光器以及光子晶体微腔激光器三类光学微腔激光器的研究取得了很大的进展.回音擘模式微腔中,模式光线由于其在微腔界面的入射角大于全反射临界角而受到限制,是一种结构非常简单的光学微腔.微盘激光器作为典型的回音壁模式微腔激光器,可利用普通的边发射激光器外延片材料,采用半导体平面工艺制作,引起了人们很大的重视.但圆对称结构的微盘激光器易于实现回音壁模式的全反射限制,却难以得到定向的激光输出,限制了它的应用.人们往往采用局部破坏圆盘的对称性、整体变形以及消逝波耦合的输出波导实现微盘激光器的定向激光输出.在圆对称的微盘结构中,模式光线在微腔与空气界面上的入射角是恒定的,而在整体变形的圆盘中,如椭圆形微腔中,模式光线在界面的入射角则不断变化,并在某些位置上小于全反射临界角而折射出光学微腔,从而实现定向输出.这种变形微盘中模式光线往往具有混沌现象,因而吸引了人们的注意.  相似文献   

5.
具有超高品质因子的光学微腔是构造各种集成光子器件的重要组件,以光子晶体微腔为基础的混合微腔为实现强烈的光和物质相互作用提供了一个新颖的平台,在腔量子电动力学、集成单光子源、量子计算等方面都具有十分广阔的应用前景。本文基于双异质结构光子晶体微腔,结合蝶形金纳米天线等离激元结构,设计实现了一种可见光波段的新型光子-等离激元混合微腔,并通过改变蝶形金纳米天线的间隙、角度、长度、厚度、相对位置等结构参数,利用三维时域有限差分法研究了等离激元纳米结构对混合腔的品质因子、有效模式体积、品质因数的调控规律,模拟结果显示,混合腔的有效模式体积和品质因数分别始终稳定在10-6(λ/n)3和108(λ/n)-3数量级,最佳品质因数值可达5.730689×108(λ/n)-3,优于其他类型的微腔。  相似文献   

6.
(上接第3期14页) 3 光学微腔和光子晶体 3.1 光学微腔 光学微腔[4]是指具有高品质因子而尺寸与谐振光波长(1)相比拟的光学微型谐振器.随着MBE、MOCVD生长技术和现代微细加工技术发展,设计、制造有实用价值的光学微腔已成为可能,并在低(无)阈值激光器研制方面取得了很大进展.大家知道,当光腔尺度与光波长可比拟时,腔内真空场的光学模式数则大大减小(1个光学模式占有相当于(λ/2n)3大小体积,n为介质有效折射率).  相似文献   

7.
通过数值模拟方法设计微米和亚微米尺寸的光子晶体及其器件;在物理所微加工条件上在多种材料上制备二维可见光和近红外波段的光子晶体、微腔、波导及光子晶体波分复用器等;然后在我们已经建成的微区光学测试装置上完成对所制备光子晶体及器件的特性测试;结合实验研究光子晶体器件理论,优化设计,进一步研制出性能更好的光子晶体  相似文献   

8.
为了实现对光波有效的选择输出,并且使光波的带宽很小,设计了微腔耦合的三通道波分复用器。对该器件采用时域有限差分法和微腔与波导间耦合模进行研究。首先,根据微腔选择不同频率的光波,设计光子晶体滤波器模型。然后,基于光子晶体耦合模理论,由定向耦合波导和一个高品质因子微腔构成的波分复用器。最后,为了提高输出光的透射效率,在波分复用结构的主波导的输出端,增加五个介质柱,形成一个反射层。实验结果表明:此结构能够通过微腔选择不同频率的光波,经过优化设计后的波分复用模型,光波的透射率得到了提高,波长λ=1.763μm的光波达到透射率将近90%。在光子晶体中取多个微腔可以选择输出更多波长的光波,所以这种结构在光子晶体集成器件的制作上有很好的应用前景。  相似文献   

9.
近年来,高品质因子的回音壁模式(WGM)光学微腔发展迅速,成为光学和物理领域的热点研究。光学微腔是一种微型光学元件,由于其微小的尺寸和高品质因子,可以加强光与物质的相互作用并使光在其中长时间存留。WGM光学微腔是光学微腔的典型代表之一,具有体积小、灵敏度高和寿命长等优点,目前,基于WGM光学微腔的应用主要集中在各类传感、激光器和滤波器等领域。然而,当前对WGM光学微腔的研究还未实现大规模生产,仅处于实验室研究阶段,工业化生产还存在成本高、制作工艺困难等缺点。文章重点介绍了WGM光学微腔的研究进展,阐述了回音壁材料对Q值的影响,近几年WGM光学微腔在传感、激光器和滤波器领域的应用,并提出了在可能实现全光网络的未来WGM光学微腔存在的挑战及进一步研究方向。对于后续研究,文章认为首先需降低成本、缩短时间,提高制备工艺的精度和效率;其次,需要解决微腔与光学器件耦合的问题,提高耦合效率并提高抗干扰能力;最后,需要解决腔体对环境的敏感性问题,以确保微腔在制备滤波器等器件时具有良好的稳定性。  相似文献   

10.
光子晶体具有调控光子的能力,而光子晶体激光器的实现则证实了这种调控能力.描述了基于InGaAsP/InP材料的二维半导体光子晶体激光器的研究,主要介绍了点缺陷型光子晶体微腔激光器的理论设计、模拟分析及与器件性能的比较.理论上采用平面波展开法和三维有限时域差分法,分析了通过采用调整点缺陷腔的最近临空气孔的尺寸,可以提高光学微腔的品质因子Q,从而提高激光器的工作性能,降低激光器的激射阈值,实验中研制了不同近邻孔径尺寸的激光器,观测到激光器激射阈值降低的现象,实验结果与理论模拟相一致,除此之外,还实现了光子晶体三角形腔和H2腔激光器的激射.  相似文献   

11.
InGaAsP/InP正方形微腔激光器   总被引:1,自引:0,他引:1  
采用平面工艺制作的定向输出微腔半导体激光器是集成光学同路的理想光源.近十几年来,以微盘为代表的回音壁模式(whispering-gallery mode)微腔激光器引起人们很大的重视.但圆对称的微盘激光器缺乏定向的激光输出,人们往往利用输出波导与微盘实现消逝波耦合或通过改变微盘的对称性来实现定向输出.最近几年,多边形微腔如止三角形、正方形、长方形、六边形等多边形光学微腔也引起人们的重视.多边形光学微腔中也能有高Q值的类回音壁模式.而且由于不具有圆对称性,其模式特性有利于简单地实现定向光输出.  相似文献   

12.
硅基光源是实现硅基集成光电子芯片的核心器件,虽然近年来国内外已经取得多项重要成果,但适合于下一代大规模光电集成芯片的小尺寸、低功耗、工艺兼容的高效硅基发光器件仍然缺乏。文章介绍了基于嵌入光学微腔中的锗量子点实现硅基发光器件方面的研究成果,通过将分子束外延生长的锗自组装量子点嵌入硅光子晶体微腔中,实现了室温下处于通信波段的共振发光。通过在图形化衬底上生长实现锗量子点的定位,并精确嵌入光子晶体微腔中,实现了基于锗单量子点的硅基发光器件。  相似文献   

13.
夏迪  赵佳鑫  吴家越  王自富  张斌  李朝晖 《红外与激光工程》2022,51(5):20220312-1-20220312-9
硫系玻璃集成光学微腔(硫系微腔)具有高线性折射率和高非线性系数、超宽透光窗口、较低的热光系数,并且可通过常规半导体微纳加工技术实现精确的色散调控,在非线性集成光子学领域备受关注。近年来,来自中山大学的研究者们开发了新型Ge25Sb10S65硫系材料平台并实现了一系列具有高品质的硫系集成光子器件。主要综述了基于硫系微腔实现集成孤子光频梳产生和调控方面的工作。通过不断优化集成光子器件的加工工艺,实现了具有高品质因子(Q>106)的集成微环谐振腔,进一步通过精确的色散调控分别在该硫系集成微腔内实现了低泵浦功率的锁模光孤子频梳和宽带可调谐的拉曼-克尔光频梳。  相似文献   

14.
利用数学Padé近似理论和时域有限差分(FDTD)方法作为一种谱分析手段,研究了几种具有对称性的光子晶体微腔结构,用较短的时间序列计算得到很高的谱分辨率和精度,通过分析光子晶体微腔的缺陷模式,得到了品质因子高达10~6量级的光子晶体微腔结构,为优选光子晶体材料,提高激光器的功率转换效率提供了一定的理论依据。  相似文献   

15.
构建了一种三层混合光子晶体等离子体激元结构,分别为金属银(Ag)层,低折射率二氧化硅(SiO2)层和二维光子晶体层。这种混合光子晶体等离子体激元结构具有明显的横磁模(TM)模式带隙。在二维的光子晶体层的中心引入一个单元胞缺陷,形成缺陷腔结构。这种纳米尺度的光子晶体等离子体微腔的体积远小于传统介质的光学微腔,光子能量可以很好地被局域到低折射率层,实现了深亚波长尺度下的对光的限制。通过改变该混合光子晶体等离子激元结构的参数,利用三维时域有限差分(3D-FDTD)方法,分析了这种混合光子晶体等离子微腔结构的光学特性。分析表明:这种纳米微腔具有极小的模式体积0.0141(λ/n)3和高的Q/V值。  相似文献   

16.
扫描近场光学显微术对InGaP微盘发光模式的研究   总被引:2,自引:1,他引:1  
采用反射式扫描近场光学显微技术分别对直径为5μm和10μm的图钉式InGaP光学微盘进行了形貌和光致发光的近场图样测量和研究,并与由常规光学荧光显微镜测得的荧光图象相比较.结果表明InGaP微盘的近场发光图样不仅反映出荧光图象的回音壁模式特征,即沿微盘周界显示为一圈红色亮环,而且证实荧光图像中的红色亮环实际上与更精细的由分立的周期性亮点组成的近场光场分布相对应.结合微盘内部与外部的近场分布可以获得光学微盘中发光模式的重要信息.  相似文献   

17.
平板型光子晶体液晶微谐振腔的温度特性   总被引:2,自引:2,他引:0  
在二维光子晶体薄板的中心空气孔中填充厚度与光波长相当的液晶材料,形成平板型光子晶体液晶微谐振腔结构。用时域有限差分法研究了液晶微谐振腔的温度特性,并用Matlab编程进行了数值计算。计算结果表明,由于液晶折射率是温度的函数以及微腔对光波传输的约束,当温度升高时微谐振腔的透射峰波长向长波长方向移动,透射峰半高宽度减小,品质因子增大,谐振波长和品质因子随填充因子与平板厚度的变化曲线向增大方向移动,接近液晶相变点时微腔的温度特性变化更迅速。平板型光子晶体液晶微谐振腔的温度特性,为可调光子晶体器件的设计提供了理论基础。  相似文献   

18.
罗强  薄方  孔勇发  张国权  许京军 《红外与激光工程》2021,50(11):20210546-1-20210546-13
绝缘体上铌酸锂薄膜凭借铌酸锂晶体优异的光学性能和薄膜器件的易加工和可集成特性,被视为理想的集成光学平台。除了波导、调制器等传输、控制器件方面的研究之外,最近铌酸锂薄膜激光器的研究也取得了显著的进展。文中将对最近迅速发展的铌酸锂薄膜微腔激光器的研究现状进行综述。首先,介绍铌酸锂晶体和铌酸锂薄膜稀土离子掺杂的主要技术方案,以及近期有关于稀土离子掺杂铌酸锂薄膜微纳光学器件制备方面的探索;其次,总结近年来掺铒铌酸锂薄膜微盘腔、微环腔激光器方面的研究进展;然后,阐述微腔激光器体系几种常见的实现单模激光器方法的工作机理,介绍研究者们利用“游标效应”调制模式损耗等方式实现掺铒铌酸锂薄膜单模激光器的研究进展;最后,基于目前报导的铌酸锂薄膜激光器研究成果,对目前研究存在的局限性以及未来的研究方向进行了探讨。  相似文献   

19.
光子晶体是介质介电常数呈周期性排布的结构,具有光子带隙,处于光子带隙中的电磁波无法在其中传播。二维平板光子晶体是通过在衬底上刻蚀周期性排列的空气孔柱而形成的结构,由于其具有优良的控制光传播的特性而得到广泛的研究和应用。介绍了在二维平板光子晶体中引入缺陷形成的光子晶体微腔和波导的方法和性质。通过调整几何参数控制微腔与波导之间的耦合,实现基于二维平板光子晶体的全光开关、光存储、单光子源等光学器件并讨论其在量子光学网络中的应用。  相似文献   

20.
随着激光技术的不断发展,高Q值光学微腔受到广泛关注,其应用领域不仅局限于传统光学,在量子信息和集成量子芯片方面更是有广阔的应用前景。简要分析了两种不同类型光学微腔(回音壁模式光学微腔和光子晶体缺陷腔)的原理、发展历程以及相对于传统光学谐振腔的优势。同时数值模拟出了不同结构光学微腔的模式分布。基于其特殊优势,介绍回音壁模式光学微腔在激光技术、生物探测以及量子物理领域的重要应用,并且预测光子晶体微腔将在集成光学、微电子技术等领域具有巨大的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号