首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Low-latency mobile IP handoff for infrastructure-mode wireless LANs   总被引:13,自引:0,他引:13  
The increasing popularity of IEEE 802.11-based wireless local area networks (LANs) lends them credibility as a viable alternative to third-generation (3G) wireless technologies. Even though wireless LANs support much higher channel bandwidth than 3G networks, their network-layer handoff latency is still too high to be usable for interactive multimedia applications such as voice over IP or video streaming. Specifically, the peculiarities of commercially available IEEE 802.11b wireless LAN hardware prevent existing mobile Internet protocol (IP) implementations from achieving subsecond Mobile IP handoff latency when the wireless LANs are operating in the infrastructure mode, which is also the prevailing operating mode used in most deployed IEEE 802.11b LANs. In this paper, we propose a low-latency mobile IP handoff scheme that can reduce the handoff latency of infrastructure-mode wireless LANs to less than 100 ms, the fastest known handoff performance for such networks. The proposed scheme overcomes the inability of mobility software to sense the signal strengths of multiple-access points when operating in an infrastructure-mode wireless LAN. It expedites link-layer handoff detection and speeds up network-layer handoff by replaying cached foreign agent advertisements. The proposed scheme strictly adheres to the mobile IP standard specification, and does not require any modifications to existing mobile IP implementations. That is, the proposed mechanism is completely transparent to the existing mobile IP software installed on mobile nodes and wired nodes. As a demonstration of this technology, we show how this low-latency handoff scheme together with a wireless LAN bandwidth guarantee mechanism supports undisrupted playback of remote video streams on mobile stations that are traveling across wireless LAN segments.  相似文献   

2.
In IEEE 802.11 networks, many access points (APs) are required to cover a large area due to the limited coverage range of APs, and frequent handoffs may occur while a station (STA) is moving in an area covered by several APs. However, traditional handoff mechanisms employed at STAs introduce a few hundred milliseconds delay, which is far longer than what can be tolerated by some multimedia streams such as voice over Internet protocol (VoIP), it is a challenging issue for supporting seamless handoff service in IEEE 802.11 networks. In this paper, we propose a pre-scan based fast handoff scheme within an IEEE 802.11 enterprise wireless local area network (EWLAN) environment. The proposed scheme can help STA obtain the best alternative AP in advance after the pre-scan process, and when the handoff is actually triggered, STA can perform the authentication and reassociation process toward the alternative AP directly. Furthermore, we adopt Kalman filter to minimize the fluctuation of received signal strength (RSS), thus reducing the unnecessary pre-scan process and handoffs. We performed simulations to evaluate performance, and the simulation results show that the proposed scheme can effectively reduce the handoff delay.  相似文献   

3.
在IEEE802.11网络中高效地切换是多媒体实时应用的一个关键要求。IEEE802.11r快速切换协议使切换时延得到了有效限制。但整个切换过程仍无法满足实时应用的需求。文中综述了无线局域网快速切换的研究,分析了IEEE802.11r对整个切换过程的影响,并介绍了快速切换研究工作。  相似文献   

4.
The introduction of the IP multimedia subsystem on 3G cellular networks and the integration with other widely deployed wireless networks based on the IEEE 802.11 protocol family require support for both mobility and quality of service. When mobile systems move across heterogeneous networks, ongoing real-time sessions are affected not only by handoff delay but also by different packet delay and bit rate. In this paper, we propose a cross-layer mechanism that takes into account mobility at different layers of the network stack in order to yield better quality for VoIP, videoconferencing, and other real-time applications. We describe our cross-layer architecture, adaptation techniques, a prototype implementation, and experimental results.  相似文献   

5.
Performance Evaluation of Layer 3 Low Latency Handoff Mechanisms   总被引:2,自引:0,他引:2  
This paper investigates the performance of two Layer 3 low latency handoff mechanisms proposed by the IETF, namely Pre- and Post-Registration. These protocols use Layer 2 triggers to reduce the built-in delay components of Mobile IP. We propose a simple analytical model that allows assessing the packet loss and the delay characteristics of these mechanisms. We describe several handoff implementations over a wireless access based on the IEEE 802.11 standard and analyze several implementation issues. Finally we study the scalability of the protocols using an OPNET simulation.  相似文献   

6.
With developments in voice over IP (VoIP), IP-based wireless data networks and their application services have received increased attention. While multimedia applications of mobile nodes are served by Session Initiation Protocol (SIP) as a signaling protocol, the mobility of mobile nodes may be supported via Mobile IP protocol. For a mobile node that uses both Mobile IP and SIP, there is a severe redundant registration overhead because the mobile node has to make location registration separately to a home agent for Mobile IP and to a home registrar for SIP, respectively. Therefore, we propose two new schemes that integrate mobility management functionality in Mobile IP and SIP. We show performance comparisons among the previous method, which makes separate registration for Mobile IP and SIP without integration, and our two integrated methods. Numerical results show that the proposed methods efficiently reduce the amount of signaling messages and delay time related to the idle handoff and the active handoff.  相似文献   

7.

Mobile handoff is a relatively significant charters-tic that involves the quality of connections (QoC) between the base stations (BS) and mobile hosts (MH). Maintaining the QoC in IEEE 802.11 networks is an important challenge in wireless mobile networks, and conjointly the necessity for the different real-life wireless mobile applications. To take care of the QoC, these wireless mobile applications is responsible for fast handoffs between BS. Most of the current research is based on a neighbor graph and maintaining the neighbor table by the connected access point and calculates the scan delay. This paper has proposed a novel neighboring approach for fast handoff where scan delay has been reduced to zero by exploiting the MH neighbor table. The result shows that the proposed approach is better than state-of-the-art approaches in terms of scan delay and re-association delay.

  相似文献   

8.
快速IP切换在无线局域网中的实现   总被引:1,自引:0,他引:1  
在移动网络中,无缝切换是提供QoS的基础,也是支持实时业务应用(如视频点播和语音传输等)的保证。针对无线局域网(WLAN)的节点切换问题,建立了各种网络模型,提出了链路层、网络层和传输层的解决方案。文章根据切换过程的技术特征,研究了WLAN中网络层切换的各种方案,包括移动IP方案、TAP-DANCE方案以及网络辅助的IP移动支持,具体分析了上述方案的实现过程,比较了性能指标,指出了存在的问题及进一步研究方向。  相似文献   

9.
Next-generation wireless systems (NGWS) integrate different wireless networks, each of which is optimized for some specific services and coverage area to provide ubiquitous communications to the mobile users. It is an important and challenging issue to support seamless handoff management in this integrated architecture. The existing handoff management protocols are not sufficient to guarantee handoff support that is transparent to the applications in NGWS. In this work, a cross-layer (Layer 2 + 3) handoff management protocol, CHMP, is developed to support seamless intra and intersystem handoff management in NGWS. Cross-layer handoff management protocol uses mobile's speed and handoff signaling delay information to enhance the handoff performance of Mobile IP that is proposed to support mobility management in wireless IP networks. First, the handoff performance of Mobile IP is analyzed with respect to its sensitivity to the link layer (Layer 2) and network layer (Layer 3) parameters. Then, a cross-layer handoff management architecture is developed using the insights learnt from the analysis. Based on this architecture, the detailed design of CHMP is carried out. Finally, extensive simulation experiments are carried out to evaluate the performance of CHMP. The theoretical analysis and simulation results show that CHMP significantly enhances the performance of both intra and intersystem handoffs.  相似文献   

10.
基本的移动IPv6(MIPv6)切换延迟非常大,不能满足实时业务的要求。本文基于对MIPv6的切换时延的分析,提出了一种IEEE802.11无线局域网环境下MIPv6的低时延切换方法,该方法通过结合使用连接触发器和快速路由器公告,并通过IP地址与MAC地址的映射机制来优化切换过程。仿真结果表明,该方法能够有效降低节点切换过程的时延,同时其性能优于以往相关的工作。  相似文献   

11.
Zohar Naor 《Ad hoc Networks》2013,11(7):2136-2145
A layer-3 mobility management scheme for an all-IP Wireless Access Network (WAN), and in particular for vehicular networks, is developed in this paper. The proposed method enables fast and reliable handoff. This feature is extremely important for high speed vehicular networks. Since vehicles are characterized by likely-predictable path, as well as very high speed, handoff events can and should be predicted in order to achieve fast and reliable handoff. As it is shown in this study, the proposed scheme can significantly reduce the packet loss ratio caused by frequent handoff events experienced by high speed vehicles. This scheme is topology-independent in the sense that it does not assume any network topology. The key idea is to use a topology-learning algorithm that enables to perform localized mobility management, by efficiently re-selecting a Mobility Anchor Point (MAP) node. The goal of the proposed scheme is to maintain a continues connection subject to user-dependent delay constraints, while minimizing the signaling cost and packet loss ratio associated with handoff events. This scheme is consistent with the existing mobility management schemes currently used in Mobile IP (MIP) and cellular networks, and it fits into the Hierarchical Mobile IPv6 (HMIPv6) scheme defined in Mobile IPv6 (MIPv6) for integrating mobile terminals with the Internet wired backbone.  相似文献   

12.
Mobility management for VoIP service: Mobile IP vs. SIP   总被引:4,自引:0,他引:4  
Wireless Internet access has gained significant attention as wireless/mobile communications and networking become widespread. The voice over IP service is likely to play a key role in the convergence of IP-based Internet and mobile cellular networks. We explore different mobility management schemes from the perspective of VoIP services, with a focus on Mobile IP and session initiation protocol. After illustrating the signaling message flows in these two protocols for diverse cases of mobility management, we propose a shadow registration concept to reduce the interdomain handoff (macro-mobility) delay in the VoIP service in mobile environments. We also analytically compute and compare the delay and disruption time for exchanging signaling messages associated with the Mobile IP and SIP-based solutions.  相似文献   

13.
Seamless SIP-based mobility for multimedia applications   总被引:4,自引:0,他引:4  
Application-level protocol abstraction is required to support seamless mobility in next-generation heterogeneous wireless networks. Session initiation protocol (SIP) provides the required abstraction for mobility support for multimedia applications in such networks. However, the handoff procedure with SIP suffers from undesirable delay and hence packet loss in some cases, which is detrimental to applications like voice over IP (VoIP) or streaming video that demand stringent quality of service (QoS) requirements. In this article we present a SIP-based architecture that supports soft handoff for IP-centric wireless networks. Soft handoff ensures that there is no packet loss and that the end-to-end delay jitter is kept under control.  相似文献   

14.
Header compression techniques such as robust header compression can be used to reduce the overhead of IP-based traffic. Voice over IP may replace voice circuits in the next generations of wireless networks, and it is the type of traffic that benefits most from header compression because its packets have small payloads. IEEE 802.11 is a technology that will play an important role in the next generations of wireless networks. The study reported in this article shows that the maximum gain of the RoHC?s U-mode when applied to VoIP over IEEE 802.11 is about 23 percent for medium or better voice quality. Values for the RoHC Umode parameters over IEEE 802.11 are also suggested.  相似文献   

15.
A Seamless Handoff Mechanism for DHCP-Based IEEE 802.11 WLANs   总被引:1,自引:0,他引:1  
IEEE 802.11 wireless networks have gained great popularity. However, handoff is always a critical issue in this area. In this paper, we propose a novel seamless handoff mechanism for IEEE 802.11 wireless networks which support IEEE 802.11i security standard. Our approach consists of a dynamic tunnel establishing procedure and a seamless handoff mechanism. Both intra- and inter-subnet handoff cases are considered in our seamless handoff approach. Our work focuses on handoffs in DHCP-based IP networks rather than mobile IP-supported networks, but the proposed scheme can be easily tailored to mobile IP-supported networks.  相似文献   

16.
The advance of computer network technologies such as IEEE 802.11 wireless local area network has made it possible for users to connect to Internet almost anywhere. A mobile node (MN) is likely to move between different base stations while running applications. The IETF has defined the Mobile IP (MIP) to allow MNs to maintain their communication uninterrupted while roaming across different IP subnets. However, the mechanisms defined in MIP may cause undesired connection disruptions or packet losses, which will significantly degrade the quality of real‐time applications. It is an important and challenging issue to support seamless handoff management. To achieve seamless handoff, we propose a unified scheme to address application quality degradation. Our main contribution is the concept and implementation of utilising buffering and resending method to eliminate the packet losses while keeping the end‐to‐end delay of real‐time traffic flow in an acceptable value. The NS‐2 simulation results show that our proposed scheme can significantly maintain application quality during layer‐2 and ‐3 handoffs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Gyasi-Agyei  A. 《IEEE network》2001,15(6):10-22
Realistic realization and mass acceptance of mobile data services require networking architectures offering acceptable quality of service and attractive tariffs. A novel strategy for this goal is maximum integration of popular data networking standards and their infrastructure into wireless networks. This article discusses a Mobile IP-based network architecture to provide IP services in DECT to support IMT-2000 applications. DECT offers micromobility within multicell subnets, while Mobile IP supports macromobility between multicell subnets. Incorporating Mobile IP into the DECT handoff mechanism in this way extends DECT micromobility with IP macromobility. Also, utilizing fast, seamless DECT handoff management reduces Mobile IP handoff delay to circumvent TCP throughput degradation during handoff and reduce frequency of Mobile IP signaling over the ether to conserve spectral efficiency. This feature seamlessly unifies DECT with the global Internet. Seamless integration of DECT with the Internet is crucial due to the continuing phenomenal popularity of the Internet and wireless communications, and ubiquity of DECT systems. To achieve the above DECT/IP interworking efficiently, the architecture introduces a network entity called a DECT service switching point, which is an extended DECT central control fixed part. DECT network-level services are mapped onto those of the IETF integrated services architecture to maintain QoS provided by DECT in the backbone Internet. Mobile Resource Reservation Protocol, an extended RSVP tailored to mobile networking, is adopted to provide the needed signaling in IntServ. The proposed architecture preserves traditional non-IP based services such as PSTN voice  相似文献   

18.
One of the most critical issues in introducing Wireless LAN (WLAN) real-time and delay sensitive applications, such as Voice over IP (VoIP), is guaranteeing IP service continuation during inter-subnet Basic Service Set (BSS) transitions. Even though WLANs offer very high channel bandwidth, they exhibit long network-layer handoff latency. This is a restraining factor for mobile clients using interactive multimedia applications such as VoIP or video streaming. In a previous work, we presented a novel fast and efficient IP mobility solution, called “IP-IAPP”, which offers constant IP connectivity to the 802.11 mobile users and successfully preserves their ongoing sessions, even during subnet handoffs (fast recovery of active connections). It is an 802.11-dependent IP mobility solution, which accelerates the network reconfiguration phase after subnet handoffs and significantly reduces the IP handoff latency. It restores L3 connectivity almost simultaneously to the L2 connectivity after a subnet handoff, due to a zero-delay movement detection method. As a result, even the most demanding next generation WLAN applications such as Voice over WLAN (VoWLAN) suffer insignificant disruption. In this paper we present an improved version of the IP-IAPP mobility mechanism (new optimized protocol procedures). Certain extensions have also been incorporated to the initial proposal, for the provision of more advanced services: (a) secure inter-AP IP-IAPP communications, (b) zero patching on the clients s/w, and (c) support of clients which use a dynamic IP address. Performance measurements out of further and more complex testing verify that the proposed method outperforms other existing mobility solutions, and still introduces the lesser imperative amendments to the existing 802.11 wireless LAN framework. Ioanna F. Samprakou received her B. Eng in Computer Engineering and Informatics in 2000 and her MSc. in the same area in 2003 from the University of Patras, Greece. She is currently a Ph.D canditate at the University of Patras. She has joined Atmel SA in 2002, where she is a Senior Wireless System Eng at the System Concept and Design group. She specializes in wireless technologies, and mobile communications, and holds a patent in the field of IP mobility. She has led teams in developing wireless 802.11 products such as Wi-Fi APs, STAs, and VoIP phones. Previously she has worked for the Research & Academic Computer & Technology Institute of Patras (RACTI) as an R&D computer engineer. She is a member of the Technical Chamber of Greece. Christos J. Bouras obtained his Diploma and PhD from the Computer Science and Engineering Department of Patras University (Greece). He is currently an Associate Professor in the above department. Also he is a scientific advisor of Research Unit 6 in Research Academic Computer Technology Institute (CTI), Patras, Greece. His research interests include Analysis of Performance of Networking and Computer Systems, Computer Networks and Protocols, Telematics and New Services, QoS and Pricing for Networks and Services, e – learning, Networked Virtual Environments and WWW Issues. He has extended professional experience in Design and Analysis of Networks, Protocols, Telematics and New Services. He has published 200 papers in various well-known refereed conferences and journals. He is a co-author of 7 books in Greek. He has been a PC member and referee in various international journals and conferences. He has participated in R&D projects such as RACE, ESPRIT, TELEMATICS, EDUCATIONAL MULTIMEDIA, ISPO, EMPLOYMENT, ADAPT, STRIDE, EUROFORM, IST, GROWTH and others. Also he is member of, experts in the Greek Research and Technology Network (GRNET), Advisory Committee Member to the World Wide Web Consortium (W3C), IEEE Learning Technology Task Force, IEEE Technical Community for Services Computing WG 3.3 Research on Education Applications of Information Technologies and W 6.4 Internet Applications Engineering of IFIP, Task Force for Broadband Access in Greece, ACM, IEEE, EDEN, AACE and New York Academy of Sciences. Theodore E. Karoubalis. received his B. Eng in Computer Engineering and Informatics in 1992 and his Ph.D. in the same area in 1996 from the University of Patras, Greece. He has joined ATMEL Hellas SA at 1998. Since 1998 he is the Manager of PSLi software dpt. and since 2002 he is the manager of System and Concepts dpt. His interests include systems on chip, embedded applications, wireless systems etc. He is a member of IEEE and the Technical Chamber of Greece.  相似文献   

19.
We propose a novel approach to QoS for real-time traffic over wireless mesh networks, in which application layer characteristics are exploited or shaped in the design of medium access control. Specifically, we consider the problem of efficiently supporting a mix of Voice over IP (VoIP) and delay-insensitive traffic, assuming a narrowband physical layer with CSMA/CA capabilities. The VoIP call carrying capacity of wireless mesh networks based on classical CSMA/CA (e.g., the IEEE 802.11 standard) is low compared to the raw available bandwidth, due to lack of bandwidth and delay guarantees. Time Division Multiplexing (TDM) could potentially provide such guarantees, but it requires fine-grained network-wide synchronization and scheduling, which are difficult to implement. In this paper, we introduce Sticky CSMA/CA, a new medium access mechanism that provides TDM-like performance to real-time flows without requiring explicit synchronization. We exploit the natural periodicity of VoIP flows to obtain implicit synchronization and multiplexing gains. Nodes monitor the medium using the standard CSMA/CA mechanism, except that they remember the recent history of activity in the medium. A newly arriving VoIP flow uses this information to grab the medium at the first available opportunity, and then sticks to a periodic schedule, providing delay and bandwidth guarantees. Delay-insensitive traffic fills the gaps left by the real-time flows using novel contention mechanisms to ensure efficient use of the leftover bandwidth. Large gains over IEEE 802.11 networks are demonstrated in terms of increased voice call carrying capacity (more than 100% in some cases). We briefly discuss extensions of these ideas to a broader class of real-time applications, in which artificially imposing periodicity (or some other form of regularity) at the application layer can lead to significant enhancements of QoS due to improved medium access.  相似文献   

20.
移动IP的预测移动管理   总被引:2,自引:0,他引:2  
移动IP使移动主机在移动中能够接入Internet而不中断正在的连接,但移动IP的切换时延较大,不能保证业务的平滑切换,本文提出了层次和预测移动管理的方法,结合无线域内的邻居单播,取得了移动IP的快速和平滑的切换,改善了业务的QOS,并减少了无线域内有线网络的负担。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号