首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of limestone powder on microstructure of concrete was studied by using mercury intrusion porosimetry (MIP), backscattering scanning electron(BSE), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The experimental results show that the compressive strength of concrete containing 100 kg/m3 limestone powder can meet the strength requirement. Limestone powder has not pozzolanic activity; it is still unhydrated at the age of 28 days. But its filling effect can make the paste matrix and the interfacial transition zone between matrix and aggregate denser, which will improve the performance of concrete.  相似文献   

2.
石粉作为机制砂生产过程中的副产品,是区别于天然砂的主要特征之一,本文在结合现有规范的基础之上,提出了将机制砂中石粉纳入胶凝体系的配合比设计方法,系统开展了两种岩性(石灰岩、花岗岩)石粉及其在不同含量条件下的室内混凝土物理力学性能试验,并结合X射线衍射仪(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、热重分析仪(TGA)等测试手段深入分析了石粉对混凝土的微观作用机理。研究结果表明:当按照本试验混凝土配合比,以石粉替代机制砂的情况下,随着石粉含量的增加,混凝土的抗压强度、劈裂强度均呈先增大后减小的趋势。微观机理分析表明机制砂中的石粉大多是惰性的,仅微量石灰岩石粉存在有限的化学活性,促进早期水泥水合作用,进而加快混凝土的早期强度的发展。机制砂中的石粉在混凝土中主要发挥物理填充作用,其含量保持在16%~19%时,能发挥良好的微集料填充效应提升混凝土力学性能,超过该范围则导致稀释效应降低混凝土力学性能。在石粉含量相同的情况下,由于花岗岩石粉组的混凝土试样的整体微观结构相较于石灰岩石粉组更为致密,从而导致花岗岩石粉组的混凝土宏观力学性能强于石灰岩石粉组。相比于同类研究,本研究获得的最优石粉含量处于较高范围,可为高石粉含量的机制砂混凝土的配合比设计及机制砂石骨料制作过程中的石粉含量控制提供科学依据。  相似文献   

3.
石灰石粉和粉煤灰对混凝土抗冻融性能的影响   总被引:2,自引:0,他引:2  
为全面掌握石灰石粉和粉煤灰对混凝土抗冻融性能的影响,提高混凝土的应用技术水平,通过可蒸发水含量法和快冻法,结合扫描电镜(SEM)微观分析,研究了石灰石粉细度对混凝土抗冻融性能的影响以及粉煤灰的改善作用.实验结果表明,比表面积分别为382、627和883m2/kg的石灰石粉对混凝土的抗冻融性能影响不大,均低于普通混凝土;掺量为10%的粉煤灰极大地改善了石灰石粉混凝土的抗冻融性能,并接近普通混凝土,表现出石灰石粉早期增强和粉煤灰后期活性的互补效应;继续增加粉煤灰掺量,急剧劣化了石灰石粉对混凝土的抗冻融性能,并低于单掺10%石灰石粉的混凝土.  相似文献   

4.
通过对比试验研究了不同细度的石灰石粉对水泥混凝土性能的影响。结果表明,磨细石灰石粉减少了水泥的标准稠度用水量,但效果甚微,缩短了水泥的初、终凝时间;并且使混凝土拌合物的塌落度增大,提高了拌合物的流动性和可塑性;通过对不同龄期混凝土试块抗压强度的测定表明,磨细石灰石粉提高了混凝土的抗压强度,并且随着石灰石粉细度的增加,混凝土的抗压强度增大。  相似文献   

5.
石灰石粉与矿物掺合料复掺对混凝土工作性及强度的影响   总被引:1,自引:0,他引:1  
研究了石灰石超细粉与低品质粉煤灰复掺对混凝土性能的影响,通过对不同比例石灰石超细粉掺加量下新拌混凝土工作性能的试验研究以及混凝土强度发展规律的分析,结果表明,在同坍落度下提高石灰石超细粉的添加量可明显减小混凝土用水量,降低水胶比;在胶凝材料用量相同时,石灰石超细粉替代量提高到一定程度时混凝土强度增长率减小.  相似文献   

6.
石灰岩机制砂的用量越来越大,相应地,它的副产物石灰岩石粉也越来越多。如果不能合理地将石粉加以利用,势必给环境造成很大的负担。以石粉做矿物掺合料取代水泥为研究目的,对比了在0%、10%、15%、20%时的比例等质量取代水泥,对混凝土工作性能、抗压强度和抗渗性能的影响,得出石粉取代水泥的比例为10%左右时,对混凝土的性能有较好的改善作用。通过测其石粉和水泥混合后的湿堆积密度,得出石粉的质量比为10%时,二者的密实度最大。表明石粉做掺合料时,可通过二者混合后密实度的变化来判断二者的最佳比例。  相似文献   

7.
石粉对混凝土性能的影响一直存在争议,其含量的确定是机制砂混凝土研究的热点问题之一。以中低强度等级、不同流动性能的混凝土为研究对象,对比研究了石灰岩机制砂的石粉含量对混凝土坍落度、抗压强度的影响规律。试验结果表明,混凝土的类型不同,在坍落度、抗压强度为最佳值时,机制砂的石粉含量也不同,分别为5%、10%、20%,但对应的水粉比均为0.4。由此推断,在进行中低强度等级机制砂混凝土设计时,可采用水粉比0.4来预测机制砂的最佳石粉含量。  相似文献   

8.
石灰石矿粉在水泥混凝土中的应用   总被引:10,自引:0,他引:10  
开发出了一种石灰石复合激发剂,应用该种激发剂可以用抗压强度52.5MPa的熟料稳定生产出石灰石混合材掺量为30%的42.5MPa水泥。同时该种复合激发剂对于大掺量石灰石粉的混凝土也具有良好的增强作用,并且石灰石矿粉可以有效改善混凝土的收缩性能。因此认为,石灰石作为一种新型改性材料在水泥混凝土中具有良好的应用前景。  相似文献   

9.
为拓展废旧轮胎、再生骨料及天然浮石的应用范围,研究了在1∶1(再生骨料和天然浮石体积比为1∶1)混合骨料中外掺不同粒径(粒径20目、60目、80目、100目、120目)和不同掺量(掺量3%、6%、9%)的废旧橡胶粉,分析混合骨料混凝土的早期力学性能和微观结构。试验结果表明:在粒径相同的条件下,废旧橡胶粉使混合骨料混凝土的抗压强度降低率增大;掺量相同时,80目抗压强度下降率最大;从环境扫描电镜中得出,橡胶粉、再生骨料、浮石与水泥界面是薄弱区域,是造成混合骨料混凝土强度降低的主要原因。  相似文献   

10.
The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when water-binder ratio is lower than 0.40, the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d, and has significant change in appearance after being soaked at the age of 200 d. Expansion damage and exfoliation occur on the surface of concrete test cube at different levels. When limestone powder accounts for about 28 percent of cementitious material, with the decrease of water-binder ratio, the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack.  相似文献   

11.
The relationship between compressive strength obtained by universal testing machine and rebound value obtained by the hammer of high performance concrete was systematically investigated at the macro level. And a model of high performance concrete strength curve was established from them. At the micro level, the microstructure, hydration products and pore structure of concrete surface were analyzed by scanning electron microscopy (SEM), comprehensive thermal analysis (TG-DSC) and mercury intrusion porosimetry (MIP), respectively. The effect of carbonation on surface strength was also investigated. The results showed that the concrete surface hardness layer grew rapidly at early stage and then stabilized at last with ongoing curing age; the rebound value and compressive strength of concrete with slag were higher than those of concrete with the same content of fly ash. In addition, the strength curve obtained by the least square method can satisfy the local standard requirements with an average relative error of 8.9% and a relative standard deviation of 11.3%. When the carbonation depth was 6 mm, the compressive strength calculated by national uniform strength curve was 25 PMa higher than that by high performance concrete.  相似文献   

12.
为了缓解日益缺乏的优质山砂资源,采用石灰石粉替代优质山砂与天然中砂按比例组成混合砂的方法,同时利用碎石替代河卵石,并且小碎碎石和大碎碎石比例3:7来配制C35~C60桥用高性能泵送混凝土。结合雾凇大桥实例研究了碎石和石灰石粉双掺技术配制C35~C60高强高性能混凝土应用技术。通过大桥类型的混凝土配合比优化设计,调配出了C35~C60泵送混凝土。为利用吉林市当地现有资源实现配制高强度可泵送混凝土提供了一条可行性途径。  相似文献   

13.
In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.  相似文献   

14.
Durability of traditional reactive powder concrete (RPC) with rich cement and high volume of fly-ash reactive powder concrete (FRPC) were studied. The X-diffraction and scanning electron microscope (SEM) measurement was imployed to analyze the microstructure. The results show that both types of RPC have higher compressive strength, less volume shrinkage ratio and better carbonation-, chloride-, freezing-resistances than the conventional concrete. The results of X-diffraction indicate that they basically have C-S-H as the main composition without Ca(OH)2 crystal and ettringite. SEM results show that hydration products of FRPC is mainly III-C-S-H which is piled up closely like densely arranged stone body and it has very compacted structure, in addition, Ca/Si ratio of C-S-H gel is lower than 1.5.  相似文献   

15.
The effect of limestone powder and fly ash on magnesium sulfate resistance of mortar was studied by testing on the strength, expansion and hydration products of the specimens stored in MgSO4 solution at certain periods. The experimental results show that the strength of mortar stored in MgSO4 solution increases a little before 28 d, but decreases fast subsequently. The more the contents of limestone powder and fly ash, the less the strength losses. Mortar swells in the MgSO4 solution with the soaking time. And the more the contents of limestone powder and fly ash, the less the expansion rate is. The expansion or strength loss of mortars results from the expansion of gypsum, as well as the loss of Ca(OH)2 and other hydration products of cement. The magnesium sulfate resistance of the mortars containing limestone powder and fly ash is high.  相似文献   

16.
Six representative parent rocks of sand, including limestone, quartzite, gneisses, granite, Basalt and Marble were selected to conduct a systematical research on the effects of various lithologies of manufactured sand on the workability, mechanism properties, volume stability and durability of manufacturedsand concrete. The experimental results show that the strength of manufactured-sand concrete is slightly higher than that of natural-sand concrete. Furthermore, substituting 15% cement of the concrete mixture with equal quantity of the six different lithology stone powder respectively, the data indicated that they can improve the concrete's workability, postpone the plastic cracking time, enhance the anti-cracking grade, and have no obvious effect on the properties of antifreeze and sulfate attack resistance but reduce the capability to resist chloride ion penetration. Moreover, the differences in concrete's workability, mechanism properties, volume stability and durability caused by various lithologies of manufactured sand and stone powder were not significant and the influence of lithology variety on the macro properties of concrete could be neglected eventually.  相似文献   

17.
针对郴州市石灰石资源丰富的现状,探讨了磨细石灰石粉混凝土的制备及其应用技术.通过工程实践表明,石灰石粉混凝土在建筑工程中的应用具有显著的技术经济综合效应,由此可进一步实现了郴州市石灰石资源的高附加值利用.该研究符合建筑材料可持续发展的要求,也为缓解地方原材料资源匮乏的压力提供了新途径.  相似文献   

18.
为了提高混凝土的抗碳化能力,采用聚合诱导相分离法合成了具有离子响应性的聚1-乙烯基-3-乙基咪唑六氟磷酸盐(PVEIm+PF6-)@Ca(OH)2微胶囊.利用扫描电子显微镜、透射电子显微镜、红外光谱仪和X射线衍射仪对微胶囊的形貌及结构进行了分析,利用碳化箱和压力试验机分别进行抗碳化与力学强度测试.结果表明,微胶囊具有完整的核-壳结构,可在水中保持稳定,但可被Cl-和CO32-触发并释放出Ca(OH)2.与不含微胶囊的混凝土相比,含微胶囊混凝土的碳化深度及碳化速率均明显降低,有利于提高混凝土的耐久性.  相似文献   

19.
The high strength concrete (HSC) was produced by partiallyreplacing the normal portland cement with special ground granulated blast-furnace slag (GGBS) ranging up to 60%. The effects of the GGBS on the flowabilityand mechanical properties of HSC were studied. The hydration process and microstructure characteristics were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively.The test results indicate that the GGBS has especially supplementary effect on water reducing and excellent property of better control of lump loss. The concrete flowability increases remarkably with the increase of GGBS fineness and the replacement level in the range of 20% to 50%. The compressive and splitting tensile strengths of HSC containing GGBS are higher than the corresponding strength of the control concrete at all ages.  相似文献   

20.
The high strength concrete (HSC) was produced by partially replacing the normal portland cement with special ground granulated blast-furnace slag ( GGBS) ranging up to 60% . The effects of the GGBS on the flowabilityand mechanical properties of HSC were studied. The hydration process and microstructure characteristics were investigated by X-ray diffraction ( XRD) and scanning electron microscopy ( SEM), respectively. The test results indicate that the GGBS has especially supplementary effect on water reducing and excellent property of better control of lump loss. The concrete flowability increases remarkably with the increase of GGBS fineness and the replacement level in the range of 20% to 50% . The compressiae and splitting tensile strengths of HSC containing GGBS are higher than the corresponding strength of the control concrete at all ages .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号