首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
开展普通引气粉煤灰混凝土、掺加聚丙烯纤维和纤维素纤维引气粉煤灰混凝土的早期开裂性能及力学性能对比试验研究。试验结果表明:掺入聚丙烯纤维、纤维素纤维可不同程度的改善混凝土早期抗裂性能,掺加聚丙烯纤维的早期抗裂效果优于纤维素纤维;掺入纤维素纤维使混凝土立方体抗压强度有显著的提高,而掺加聚丙烯纤维对混凝土的影响并不显著且略微下降;掺加纤维素纤维对混凝土的抗折强度有明显的改善,而掺加聚丙烯纤维对混凝土抗折强度没有太大的影响且略微下降。  相似文献   

2.
渠道衬砌混凝土极易开裂渗透,严重影响渠道的正常使用和混凝土耐久性。纤维可以在混凝土中发挥阻裂作用。通过对比试验,研究了纤维素纤维混凝土与聚丙烯纤维混凝土的早期抗裂和抗渗性能,分析纤维素纤维掺量对混凝土抗裂性和抗渗性的影响规律,探讨纤维改善混凝土抗裂和抗渗性能的机理,提出经济合理的纤维掺量。试验结果表明:纤维素纤维的掺入显著改善了混凝土的抗裂和抗渗性能,且改善效果明显优于聚丙烯纤维。  相似文献   

3.
王旭 《吉林水利》2021,(4):28-30,39
纤维素纤维作为一种新型高科技技术材料,具有诸多性能优势,在水工混凝土领域具有十分广阔的应用前景.此次研究通过室内试验的方式,研究了粉煤灰掺量对纤维混凝土抗硫酸盐侵蚀性能影响,综合研究成果,建议在应用纤维素纤维混凝土时,采用10%-20%粉煤灰掺量.  相似文献   

4.
膨胀纤维混凝土是用膨胀纤维抗裂防水剂与其他材料一起拌制形成的一种集抗裂与防渗为一体的新型混凝土.通过模拟水工混凝土中较大的蜂窝、孔洞等缺陷,在试件中凿除缺陷混凝土,使其形成形状和深度都相同的方形凹槽,采用正交法设计比原混凝土强度高一等级的小一级配膨胀纤维混凝土进行修补,分析了不同粉煤灰掺量、纤维膨胀剂掺量、减水剂掺量和沙率对其抗渗性能的影响,得出当粉煤灰掺量为20%、纤维膨胀剂掺量为5%、减水剂掺量为1.2%、沙率为35%时,可获得最佳的抗渗性能.它与无缺陷的原混凝土抗渗性能进行对比,结果表明:纤维膨胀剂是影响新型膨胀纤维混凝土的最重要因素;纤维膨胀剂并非掺量越大抗渗性能越好;修补后的混凝土获得了较好的抗渗效果.  相似文献   

5.
对掺入火成岩纤维水工粉煤灰混凝土抗冻性能进行了试验研究,得到纤维掺量对混凝土抗冻性能的影响规律,并分析了火成岩纤维增强水工粉煤灰混凝土抗冻性能的机理。  相似文献   

6.
沙河渡槽是南水北调中线保证通水与否的重要控制工程,是目前采用预制工艺的单体自重最大的薄壁预应力输水构件,对构件的抗裂和强度及耐久性存在极高的要求。纤维素纤维是新兴的复合纤维,属于低弹模级材料。可以大幅提高混凝土及砂浆的均质性,有效抑制早期的塑性裂缝和干缩裂缝,同时改善混凝土的抗渗性、抗冻融性及耐火性,最终达到提高混凝土的耐久性。通过现场在混凝土配合比中添加纤维素纤维的试验,验证纤维素纤维对于高强度混凝土性能的影响和改善,挑选适合沙河渡槽预制槽体混凝土的纤维素纤维以及掺量,达到满足设计要求,保证沙河渡槽的工程质量。  相似文献   

7.
为分析聚丙烯纤维掺加对水工混凝土工程性能的影响,展开试验设计,通过室内试验进行了聚丙烯纤维混凝土和普通混凝土性能、抗压强度及劈拉强度、收缩开裂性能等的对比分析,结果表明,掺加聚丙烯纤维后,水工混凝土内部会产生明显的微加筋效应,可有效抑制早期收缩裂缝的出现,提升混凝土抗裂、抗渗、抗冲击及抗折性能。  相似文献   

8.
张晶 《吉林水利》2021,(6):35-37
鉴于膨胀剂和纤维在改善混凝土抗裂性能方面机理不同,通过室内试验对双掺纤维膨胀剂水工混凝土抗裂性能展开研究.结果显示,双掺膨胀剂纤维混凝土的抗裂性能比单掺膨胀剂或混凝土的抗裂性能存在明显优势.根据试验结果,考虑工程的经济性,建议混凝土中UEA膨胀剂掺量为16 kg/m3、纤维掺量为0.5 kg/m3.  相似文献   

9.
试验研究了单掺不同掺量钢纤维和聚丙烯纤维对水工混凝土抗冻融性能的影响。试验结果表明:一定掺量下,2种纤维混凝土的抗冻性能均优于基准混凝土;聚丙烯纤维对水工混凝土抗冻性能的提高较为显著;单掺1kg/m3聚丙烯纤维对水工混凝土抗冻性能改善效果最好,经过300次冻融循环后相对动弹性模量达到85.5%,质量损失率仅为1%。  相似文献   

10.
试验研究了单掺不同掺量钢纤维和聚丙烯纤维对水工混凝土抗冻融性能的影响.试验结果表明:一定掺量下,2种纤维混凝土的抗冻性能均优于基准混凝土;聚丙烯纤维对水工混凝土抗冻性能的提高较为显著;单掺1kg/m3聚丙烯纤维对水工混凝土抗冻性能改善效果最好,经过300次冻融循环后相对动弹性模量达到85.5%,质量损失率仅为1%.  相似文献   

11.
探讨了纤维对沥青混合料性能改善的原因,分析了纤维增强沥青混合料性能的理论及其在沥青混合料中的作用.纤维的掺入能够大幅的改善沥青混凝土的抗压、抗裂性能,但这些性能的改善并不与纤维掺量成正比,它存在一个合理掺量.当超出合理掺量,沥青混凝土的各项性能反而会下降,甚至低于普通沥青混凝土的性能.  相似文献   

12.
针对气候寒冷的东北地区,通过试验探讨了聚丙烯腈纤维混凝土在不同掺量、不同温度条件下的力学与变形性能、抗裂性与耐久性。试验表明:砂浆中掺入聚丙烯腈纤维可有效提升其抗裂性能;常温下聚丙烯腈纤维的掺入在一定程度上弱化了混凝土性能,低温下掺0.4%聚丙烯腈纤维的混凝土变形与弹性模量、抗压强度都较高,冻融循环后的质量损失率较低。因此,掺0.4%聚丙烯腈纤维可以明显改善混凝土的抗冻性、抗裂性以及低温力学性能,在水利工程项目中具有广泛的应用前景。  相似文献   

13.
通过掺加改性聚丙烯纤维和聚丙烯混杂纤维混凝土在400℃和800℃高温后的质量损失及残余抗压强度对比,系统研究了改性聚丙烯纤维对混凝土耐高温性能的影响。结果表明:改性聚丙烯纤维的掺加可以有效提高混凝土的耐高温性能,随着纤维掺量的增加,高温后混凝土的质量损失和抗压强度损失均减少,且聚丙烯纤维的掺加可以有效降低混凝土发生爆裂的可能性。  相似文献   

14.
水泥基材料极易干缩开裂,因此一般在水泥基体中掺入纤维来限制其干缩。为研究纤维素纤维对水泥基材料干缩性能的影响,现通过对比不同水胶比及纤维素纤维掺量下水泥砂浆的干缩性能,分析了纤维掺量对水泥砂浆干缩性能的影响规律,探讨了纤维素纤维改善水泥砂浆抗干缩性能的机理,并与聚丙烯纤维进行对比分析,确定干缩变形较小的纤维种类与合理掺量。试验结果表明:纤维砂浆的干缩值随水灰比的增大而增大,纤维砂浆的干缩随龄期的变化呈指数关系;纤维素纤维的掺入显著降低了水泥砂浆早期干缩的变化速率,大大减少了砂浆的硬化后期干缩值,并且砂浆干缩值随着纤维素纤维掺量的增加而降低;纤维素纤维的经济掺量为1.1kg/m3。  相似文献   

15.
通过试验研究了不同掺量聚丙烯纤维混凝土的抗渗性能,分析了掺入纤维使混凝土抗渗性能提高的原因.试验表明:采用适当配合比的聚丙烯纤维混凝土的抗裂防渗性能可以得到极大提高.  相似文献   

16.
聚丙烯微纤维混凝土性能试验研究   总被引:1,自引:0,他引:1  
聚丙烯微纤维主要用于混凝土的加强筋系统,它的加入,可使混缔造寿命大大延长,同时可以改善混凝土的性能。结合水电工程对聚丙烯微纤维混凝土的基本性能进行了试验研究,研究结果表明聚丙烯微纤维可以改善混凝土的抗裂、抗渗、抗冲击及耐磨性能等,对于水工混凝土(特别是有抗耐磨要求混凝土),掺加聚丙同纤维不失为一改善混凝土性能的有效方法。  相似文献   

17.
包惠明  覃峰  余文成  尤伟 《人民长江》2008,39(13):88-90
剑麻纤维是一种绿色、环保、经济、性能优良的植物纤维,可以替代人工纤维和矿物纤维作为水泥混凝土的改性材料.本试验通过不同掺量剑麻纤维水泥混凝土物理性能、各项力学性能、干缩性能等试验,确定最佳剑麻纤维的掺量范围.同时,通过剑麻纤维水泥混凝土的性能试验发现,在水泥混凝土中掺入一定量的剑麻纤维能够显著提高混凝土工作性、劈裂抗拉强度、抗折强度、抗干缩和抗冲击等性能.  相似文献   

18.
在聚丙烯纤维混凝土制作过程中,聚丙烯纤维和基体材料之间的粘结性能对混凝土的特性存在显著影响。此次研究通过室内试验的方式,探讨和分析了粉煤灰掺量对聚丙烯纤维混凝土材料界面粘结性能的影响。综合研究成果,粉煤灰掺量为20%时可以获得最佳界面粘结性能,可以为工程应用提供借鉴。  相似文献   

19.
针对水利工程的特点,采用掺入不同品种和不同掺量聚合物纤维试验方案,采用自行设计的试验方法(约束法)测定混凝土抗裂性能,对聚合物纤维混凝土的配合比和性能进行研究.研究结果表明,聚合物纤维混凝土的抗裂性能、抗渗性能、变形性能和力学性能等比普通混凝土显著提高.  相似文献   

20.
为了推广再生混凝土在高海拔和北方寒冷地区的应用,对单掺、混掺不同体积掺量玄武岩纤维和聚乙烯醇纤维的再生混凝土进行质量损失率、相对动弹性模量、抗压强度损失率3项抗冻性能指标的探究,并用SEM对200次冻融循环后混掺纤维再生混凝土进行细观作用机理分析,最后结合响应面法对混掺纤维掺量进行优选。结果显示:外掺纤维能够提高再生混凝土的抗冻性能,而混掺纤维效果优于单掺纤维;2种纤维在试件内部呈网状分布,协同受力,与基体互相约束,很大程度限制了裂缝的扩展和数量;纤维优化结果显示当聚乙烯醇纤维与玄武岩体积掺量分别为0.170%和0.246%时,再生混凝土的抗冻性能最优。研究成果对玄武岩-聚乙烯醇纤维再生混凝土纤维掺量设计具有一定的借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号