首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
研究了EDTA、柠檬酸、酒石酸、氟化钠对磷酸盐-高锰酸钾转化膜的影响。采用金相显微镜观察了转化膜的微观形貌,并通过电化学测试和全浸蚀试验研究了转化膜的耐蚀性。结果表明:化学转化处理提高了镁合金的耐蚀性,而且不同添加剂对转化膜耐蚀性的提高效果不一样。其中复合添加剂对镁合金耐蚀性的提高效果更为显著,最优配方为:磷酸二氢铵80g/L,高锰酸钾20g/L,酒石酸0.5g/L,氟化钠0.4g/L,温度35℃,时间25min。  相似文献   

2.
分析了钼酸铵、高锰酸钾、氟钛酸、氯化钠和氟化铵等因素对铝材表面制备钼锰钛系化学转化膜的影响。最佳的成膜工艺条件为:钼酸铵10g/L,高锰酸钾1.0g/L,氟钛酸(45%)3.0g/L,氯化钠0.6g/L,氟化铵1.0g/L,室温,15min。形成的转化膜致密、均匀,耐蚀性良好。  相似文献   

3.
研究了稀土铈对中温锌系磷化的影响。通过正交试验确定了最佳的中温锌系磷化工艺,在此基础上,研究了硝酸铈的质量浓度对磷化膜的表面形貌、成分及耐蚀性的影响,并采用计时电位方法对稀土铈在磷化膜形成过程中的行为进行了分析。研究表明:稀土铈能促进磷化膜的形成,促使磷化膜致密,提高磷化膜的耐蚀性。最佳的磷化液组成及工艺条件为:磷酸二氢锌33g/L,硝酸锌95g/L,硝酸镍1g/L,氟化钠1.2g/L,硝酸铈60mg/L,温度65℃,时间10min。在此条件下能获得结晶细致、耐蚀性良好的磷化膜。  相似文献   

4.
对镁合金表面Ce-Mn和Ce-Mo复合转化膜的性能进行了研究。镁合金Ce-Mo复合转化的最佳配方为:Ce(NO3)39g/L,Na_2MoO_4 4g/L,C_6H_5Na_3O_7·2H_2O 2g/L,温度25℃,时间10min。镁合金Ce-Mn复合转化的最佳配方为:Ce(NO_3)_3 5g/L,KMnO_4 2g/L,NH_4HF_2 0.1g/L,Na_2B_4O_7·10H_2O 0.2g/L,温度25℃,时间2min。最优配方下得到的镁合金复合转化膜平整、结晶细致。Ce-Mo复合转化膜的相组成为Mg、MoO_2、MoO_3、CeO_2和Ce2O_3;Ce-Mn复合转化膜的相组成为Mg、MgO、MnO_2、CeO_2和Ce_2O_3。两种复合转化膜的耐蚀性均比单系转化膜的耐蚀性好,其中Ce-Mo复合转化膜的耐蚀性最好。  相似文献   

5.
选用钼酸钠、氟化钠、高锰酸钾为主、辅盐,在pH为2,成膜温度为40℃和成膜时间为20 min的条件下,制备了铝合金化学转化膜,之后在PTFE的乳液中进行聚四氟乙烯铝合金复合膜的制备.采用正交试验法确定了PTFE的浓度2 g/L、成膜时间40 min、成膜温度80℃为最佳工艺条件.经过SEM扫描电镜观察,铝合金表面复合膜分布均匀,成膜情况良好.通过耐蚀性、耐磨性等性能检测,表现出良好的防腐蚀和耐磨的性能.  相似文献   

6.
以H_2TiF_6、H_2ZrF_6为主成膜剂,通过添加六偏磷酸钠和六水合硝酸铈,在铝合金表面制备了Ti-Zr-Ce转化膜。通过正交试验确定了最佳的成膜配方为:H_2TiF_6(质量分数为50%) 2.0mL/L,H_2ZrF_6(质量分数为40%) 1.0 mL/L,六偏磷酸钠0.50 g/L,六水合硝酸铈0.10 g/L,反应温度30℃,反应时间150 s,pH值3.5。Ti-Zr-Ce转化膜的自腐蚀电位为-0.577 V,自腐蚀电流密度为0.115μA/cm~2,耐蚀性好。  相似文献   

7.
镁合金锌系磷酸盐-植酸盐复合转化膜耐蚀性的研究   总被引:1,自引:0,他引:1  
在AZ91D镁合金表面制备锌系磷酸盐-植酸盐复合转化膜。通过硫酸铜点滴试验、Tafel曲线、交流阻抗谱等方法,研究了转化膜对镁合金表面性能的影响。通过正交试验优选出的最佳工艺参数为:植酸1%(体积分数),氧化锌10g/L,磷酸18mL/L,柠檬酸6g/L,酒石酸3g/L,氟化钠1g/L,硝酸锌5g/L,成膜温度40℃,成膜时间10min,pH值2。转化膜的存在较大程度地改善了AZ91D镁合金的耐蚀性。  相似文献   

8.
采用碱性钼酸盐转化工艺在6063铝合金表面制得耐蚀性良好的转化膜。转化液组成为:钼酸钠10.0g/L,乙二胺四乙酸二钠2.0 g/L,三乙醇胺3.0g/L,氟化钠5.0g/L,含硫无机促进剂2.0 g/L。研究了转化液pH、温度和处理时间对转化膜耐蚀性的影响。结果表明,在pH=11.0、温度50℃的条件下处理6063铝合金6.0 min所得转化膜耐蚀性最优。所得转化膜呈均匀的灰色略泛绿,表面粗糙但无裂纹,厚度达30μm以上,由Al_2O_3、MoO_3、Al_2(MoO_4)_3、Na_3AlF_3等化合物构成。  相似文献   

9.
通过化学转化的方法在镁合金表面制备出具有优良性能的磷酸盐转化膜。通过单因素试验,得出最优工艺方案为:磷酸氢二钠25g/L,硝酸锌5g/L,氯化钙1g/L,亚硝酸钠4g/L,氟化钠1.5g/L,pH值2,温度55℃,时间30min。最优工艺方案下得到的磷酸盐转化膜的耐蚀性较好,耐蚀时间达到35.91s,其自腐蚀电位比镁合金基体的向负方向移动了0.3V。磷酸盐转化膜表面存在一些裂纹,若要制备更优的磷酸盐转化膜,需对其进行封闭处理。  相似文献   

10.
研究了高锰酸钾的质量浓度、钼酸铵的质量浓度和钝化温度对镀锡板高锰酸盐体系钝化膜的影响。采用硫酸铜点滴试验和电化学测试方法考察钝化膜的耐蚀性。通过单因素试验得到了最佳配方和工艺条件:高锰酸钾20g/L,钼酸铵25g/L,磷酸80mL/L,钝化时间10s,电流密度0.2A/cm~2,钝化温度30℃。采用最佳配方和工艺条件制备的钝化膜均匀地覆盖在镀锡板表面,起到了很好的保护作用。  相似文献   

11.
AZ91D镁合金磷酸盐-高锰酸盐体系化学转化工艺   总被引:1,自引:0,他引:1  
通过正交试验研究了以磷酸盐-高锰酸盐为基础的镁合金无铬转化工艺,讨论了工艺参数对转化膜厚度及其有机涂层耐蚀性的影响,并通过扫描电镜、能谱等方法分析了转化膜的微观形貌和化学成分。研究表明,当磷酸二氢铵为10~15g/L、高锰酸钾为5~10g/L时,磷酸盐-高锰酸的最佳处理工艺为:ZnSO43g/L,NaF3g/L,pH3,温度45°C。转化液pH对膜层厚度及有机涂层的耐蚀性有显著的影响。在试验参数范围内,转化膜的厚度及后续有机涂层的耐蚀性能随pH的减小而大幅度提高。经该工艺处理后,后续有机涂层的耐蚀性能提高10倍以上。  相似文献   

12.
在Ce-Mn稀土钝化液中添加Cl-作为促进剂,以6063铝合金为基体制备了Ce-Mn转化膜。分别采用扫描电镜(SEM)和能谱仪(EDS)研究了转化膜的表面形貌及元素组成,并采用硫酸铜点滴腐蚀实验、动电位极化曲线以及电化学阻抗谱(EIS)研究了Ce-Mn转化膜的耐蚀性。结果表明,Ce-Mn转化膜主要由Ce、Mn、O等元素组成,往稀土钝化液中添加Cl-可使膜层更平整、致密,转化膜的平均耐点滴时间从50s提高至100s,在NaCl质量分数为3.5%的腐蚀介质中的腐蚀电流密度明显降低,转化膜极化电阻增大,铝合金的耐蚀性显著提高。  相似文献   

13.
在正交试验法确定化学镀Ni-Co-P合金镀液配方的基础上,向镀液中加入硫酸铈,在AZ91D镁合金基材上得到了性能最佳的Ni-Co-P-Ce合金镀层。最佳的镀液配方及工艺条件为:碘化钾0.06g/L,十二烷基苯磺酸钠0.02g/L,硫酸镍25.0g/L,硫酸钴15.0g/L,次磷酸钠25.0g/L,氟化铵30.0g/L,柠檬酸三钠45.0g/L,硫酸铈0.15g/L,pH值8.5,温度85.0℃,时间1.5h。加入适量的稀土铈能明显提高镀层的耐蚀性和硬度。在最佳配方及工艺条件下,得到孔隙率低、耐蚀性较好的镀层,并且镀层与基体结合较好。  相似文献   

14.
汽车发动机缸盖为铝合金材质,为减少腐蚀并延长使用寿命,在实际生产过程中往往需要进行表面处理,进一步满足相应的环境安全性和适应性的要求。采用能耗少,操作简单的无铬化学氧化方法,利用电化学极化曲线、E-T曲线以及交流阻抗谱测试评估铝合金高锰酸盐化学转化膜在3.5%的NaCl水溶液中的耐蚀性能。实验结果表明,高锰酸盐转化膜在KMnO4 8 g/L,NaF 1 g/L,Na2ZrF6 0.06g/L,活性剂适量,pH值为2,处理温度为室温,浸泡时间为10 min得到了较好的化学转化膜。  相似文献   

15.
镀锌层单宁酸钝化膜的耐蚀性   总被引:2,自引:0,他引:2  
为提高镀锌层的耐蚀性,以氟钛酸钾、双氧水、硝酸为辅助成分,制备了单宁酸钝化液,并对低碳钢上的碱性镀锌层进行了钝化处理.通过质量分数为5%的NaCl溶液浸泡试验,确定了最佳钝化液组成和钝化工艺条件为:单宁酸40 g/L,HNO3 5 mL/L,氟钛酸钾10g/L,H2O2 60 mL/L,温度25℃,时间20~30 s....  相似文献   

16.
采用锌系磷化工艺对钢铁表面进行防护,以提高钢铁表面耐蚀性及与涂层的结合力。以磷化膜外观及耐蚀性为考察指标,通过单因素实验考察了常温锌系磷化液中硝酸铜、柠檬酸、氟化钠、硝酸镍和钼酸钠5种促进剂对磷化的影响。结果表明,各促进剂对磷化膜外观及耐蚀性均有明显的促进作用,其适宜质量浓度为:0.08 g/L硝酸铜,2 g/L柠檬酸,1.2 g/L氟化钠,15 g/L硝酸镍,2 g/L钼酸钠,并探讨了促进剂的磷化作用机理。  相似文献   

17.
以KMnO4和TiOSO4为钝化剂主要成分,研究6063铝合金锰(VII)-钛(IV)系钝化成膜新工艺,考察钝化液成分、温度、pH值、反应时间对成膜过程及膜耐腐蚀性能的影响,并通过正交实验优化工艺方案,分析转化膜的形貌和化学组成,采用化学方法考察化学转化膜的耐蚀性能. 结果表明,最佳钝化液配方为:KMnO4 5 g/L, TiOSO4 2 g/L, NaF 0.05 g/L, ZnSO4 0.3 g/L. 在钝化温度50℃、钝化时间15 min及pH值2.7的最佳工艺条件下,锰(VII)-钛(IV)系钝化工艺制备的化学转化膜为金黄色,膜质量为589 mg/m2,膜主要由O, Mn, Al, Zn, Ti组成. 锰(VII)-钛(IV)系钝化新工艺环境友好,所制化学转化膜耐CuSO4点滴腐蚀性能优于Cr(VI)转化膜,耐人造海水腐蚀能力与Cr(VI)转化膜相近.  相似文献   

18.
侯瑶  吴克凡 《电镀与涂饰》2021,40(3):220-224
对装饰用H62铜合金进行稀土镧-铈复合化学转化.对转化液组成和工艺条件进行正交优化,得到最优参数为:硝酸镧4 g/L,硝酸铈4 g/L,苯并三氮唑15 g/L,钼酸钠2 g/L,柠檬酸13 g/L,磺基水杨酸9 g/L,十二烷基苯磺酸钠0.4 g/L,温度53°C,时间4 min.该条件下所得La-Ce复合转化膜的厚度...  相似文献   

19.
采用正交试验的方法,以耐蚀性为指标,探究了磷酸锌转化膜的最佳制备工艺.利用扫描电子显微镜和动电位极化曲线等表征手段,对转化膜的形貌和耐蚀性进行了研究。最佳的磷化液配方为:1.25g/L NaNO_3,3g/L C_6H_8O_7·H_2O,2.5g/L NaF,5.5g/L ZnO,12.5mL/L H_3PO_4。  相似文献   

20.
本文采用大量工艺试验研究并确定了锡青铜材料化学钝化处理的最佳工艺配方和参数,并采用硝酸点滴方法对钝化膜的耐腐蚀性能进行了验证。结果表明,最佳钝化工艺参数为:重铬酸钠120~130 g/L,硫酸4.8~5.2 g/L,氯化钠7~8 g/L,温度θ为22℃,钝化时间t为4 s。处理后的锡青铜表面形成了光亮的彩虹色钝化膜,耐硝酸点滴试验的时间延长了3倍多,提高了锡青铜钝化膜层的耐腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号