共查询到20条相似文献,搜索用时 20 毫秒
1.
针对零件在密集遮挡等复杂场景下存在视觉识别难度大、检测精度低和实时性差的问题,提出YOLOv5零件目标检测的改进算法。在YOLOv5的主干网络中添加卷积注意力机制模块,进而增强算法对零件的特征提取能力;将抑制准则改为考虑真实框与预测框重叠区域且同时计算两个框之间中心点距离的DIoU-NMS,并以此作为后处理方法,进而提高零件检测精度。试验结果表明,相比原始YOLOv5算法,本改进算法将mAP@0.5提升1.6%,识别速度达58.8帧/s,可以更好地完成检测密集遮挡零件的任务,同时保证了实时性。 相似文献
2.
文中针对目前输送带损伤检测大多是输送带撕裂且缺乏其他损伤类型研究的问题,提出一种改进YOLOv5的矿用输送带损伤检测方法。将SPD-Conv模块替换Conv模块中的卷积层,提升小目标的检测效果;在骨干特征网络与最后预测网络之前引入CBAM注意力机制,对重要的特征通道进行强化;最后,在YOLOv5的基础上引入高斯滤波器消除噪声干扰,提升算法目标检测效率。试验结果表明:改进后的YOLOv5目标检测网络在对输送带的撕裂、击穿、表面划伤、破损4种损伤类型的检测平均精度均值达92.3%,相较于YOLOv5算法提高了35.1%,检测速度达90帧/s,提高了20%,实现了对矿用输送带损伤的快速识别。 相似文献
3.
4.
带钢表面缺陷检测是生产过程智能检测的重要任务。针对目前带钢表面缺陷检测算法效率低、实时性差的问题,本文提出了基于卷积神经网络的轻量级目标检测器。该方法以YOLOv4-tiny模型为框架,针对带钢表面缺陷检测任务的特殊性,结合了多尺度检测与空间注意力机制的优化策略,在保证检测效率的同时提高了轻量级目标检测器的精度。实验证明,所提出的改进的YOLOv4-tiny模型能够精确地检测带钢表面缺陷,平均均值精度mAP(mean Average precision)为73.29%,并且每秒帧数FPS (Frames per second)达到163,满足实际工业落地的实时性要求。 相似文献
5.
针对复杂场景中交通标志尺度变化大导致识别精度低的问题,提出了一种改进的YOLOv4算法。首先,设计了一个注意力驱动的尺度感知特征提取模块,通过构建类似残差结构的分层连接方式,增加每层的感受野范围,以获得更具细粒度的多尺度特征,并在注意力驱动下生成一对具有方向感知与位置敏感的注意力图,使网络能聚焦于更具鉴别力的关键区域;然后,构建一个特征对齐的金字塔卷积特征融合模块,即通过卷积计算相邻尺度特征图间的特征偏移量进行特征对齐;最后,通过金字塔卷积的方式使网络自适应学习最优的特征融合模式,并构建特征金字塔用于识别不同尺度的交通标志。实验结果表明,在TT100K数据集上改进算法比原YOLOv4算法的识别精度提高了5.4%,且优于其他对比识别算法,FPS达到33.17,可满足道路交通标志识别的精确性、实时性等要求。 相似文献
6.
为解决常规深度学习方法检测轮毂内部缺陷存在模型尺寸大、参数多和精度低等问题,提出一种轻量化YOLOv4的轮毂内部缺陷检测算法。该算法采用MobileNetV3替换YOLOv4的主干特征提取网络,并利用深度可分离卷积模块对YOLOv4的PANet(path aggregation network)模块中的传统卷积进行了替换。同时,在PANet特征加强网络中加入通道注意力机制(SE)模块,提高了轮毂内部缺陷目标的识别精度。测试结果表明,所提算法检测精度为90.23%,权值文件为45.2 MB,检测速率为68.38帧/s。相较于常规模型性能有所提升,更适用于轮毂内部缺陷的快速、准确检测。 相似文献
7.
针对岸边集装箱桥式起重机钢丝绳传统监测方式存在着故障识别率低的问题,提出了一种基于改进YOLOv5的岸边集装箱桥式起重机钢丝绳损伤检测方法。首先,在骨干特征提取网络部分引入注意力机制CBAM,对重要的特征通道进行强化;其次,选用损失函数EIOU对训练模型进行优化;最后替换原YOLOv5算法使用的加权NMS算法,提高边框的位置精度。实验结果表明,改进后的YOLOv5目标检测网络在钢丝绳损伤数据集上对断丝、磨损、畸变3种损伤类型的平均精度均值达90.3%,比原始的YOLOv5算法提高了3%,检测效果更优,实现了对钢丝绳更快速的识别,为今后开发岸边集装箱桥式起重机钢丝绳在线监测系统提供了一定的理论基础。 相似文献
8.
9.
针对现用PCB缺陷检测方法存在效率低、误检率高、通用性低、实时性差等问题,提出基于改进YOLOv4算法的PCB缺陷检测方法。使用改进二分K-means聚类结合交并比(IoU)损失函数确定锚框,解决预设锚框不适用PCB小目标缺陷检测的问题。引用MobileNetV3作为特征提取网络,提升对PCB小目标缺陷的检测性能,同时方便部署在现场轻量化移动端。引入Inceptionv3作为检测网络,利用多种卷积核进行运算满足PCB缺陷多类别的检测要求。以PCB_DATASET数据集为测试对象,将本文方法与Faster R-CNN、YOLOv4、MobileNetV3-YOLOv4等开展对比验证实验。结果表明,本文方法均值平均精度(mAP)为99.10%,模型大小为53.2 MB,检测速度为43.01 FPS,检测mAP分别提升4.88%、0.05%、2.01%,模型大小分别减少0、203.2、3.3 MB,检测速度分别提升29.93、6.37、0.79 FPS,满足PCB工业生产现场高检测精度和检测速度要求。 相似文献
10.
目前交通标志检测在自动驾驶和辅助驾驶等智能驾驶中扮演着重要的角色,其性能的好坏影响着车辆行驶的安全。针对交通标志图像背景复杂和检测目标小等问题,提出了一种基于改进YOLOv8的交通标志检测算法。首先使用全局注意力模块,通过引入空间注意力和通道注意力机制,对输入特征图进行全局关注,有效捕捉输入特征图的全局上下文信息,对特征图在通道和空间维度上进行加权,使模型能够更加关注图像中的交通标志,避免干扰信息的影响,提高网络检测精度;其次引入幻影卷积替换原网络中的普通卷积,减小网络模型体积的同时提高模型的检测速度;最后增加一个小目标检测层,保留特征图更多浅层细节信息,提高网络对小尺寸交通标志的检测能力。实验结果表明,改进后的算法在精确率、召回率和平均精确率上相比于原算法分别提升2.6%、1.1%和1.5%,检测速度满足实时性要求。 相似文献
11.
针对无人机影像中道路小目标漏检和目标之间遮挡导致的目标检测精度低、鲁棒性差等问题,提出一种多尺度融合卷积注意力模块(Convolutional block attention module, CBAM)的YOLOv5道路目标检测算法,即YOLOv5s-FCC。首先,引入小目标感知层对模型进行多尺度改进,增加一个针对小目标的YOLO检测头以提高网络对道路中小目标的特征提取能力。其次,利用CBAM融合空间和通道信息以增强网络中的重要信息,通过将CBAM引入Backbone主干网络不同位置,以获得CBAM最佳融合位置。最后,采用CIo U作为损失函数,以提高边界框预测所需的计算速度和精度。在自建的无人机道路目标数据集上进行训练,结果表明,相较YOLOv5算法,YOLOv5-FCC算法可将mAP50和mAP50-95分别提高2.0%和4.2%。在VisDrone数据集上也验证了YOLOv5-FCC算法的有效性,并建立了基于无人机的道路目标检测系统,实现道路目标的自动检测。 相似文献
12.
13.
针对目前铝材表面缺陷检测算法在实际工程应用中检测精度低以及不够轻量化难以部署等问题,文章提出一种基于改进YOLOv5s的铝材表面缺陷检测方法。该算法以经典YOLOv5s模型为基础,将ShufflenNetV2-Block算法融合到主干网络backbone中,降低模型的计算复杂性;然后添加SE注意力机制,使注意力集中于缺陷相关区域,更好地区分类别之间的差异,提高分类性能和检测效率;最后优化损失函数,采用SIoU(S-intersection over union)替代CIoU,提升网络定位精度。结果表明:针孔类和斑点类缺陷检测精度比原版YOLOv5分别提升了8.3%和8.4%,mAP值提高了6.4%,提高了缺陷检测精度且降低了模型的大小和所占内存,更加便于移动端部署,有效改善了制造过程中漏检问题。 相似文献
14.
15.
随着计算机视觉行业的不断发展,基于卷积神经网络的目标检测算法也受到了研究人员的重视。针对传统的YOLOv5目标检测算法中的边界框回归损失函数GIOU存在当检测框与真实框呈包含的状态时会退化到传统IOU损失函数,以及当检测框和真实框相交时在垂直和水平两个方向上存在收敛速度慢的问题,提出一种改进的YOLOv5目标检测算法。在传统YOLOv5的基准网络中添加注意力机制,然后在边界框回归损失函数中引入真实框与预测框中心的欧式距离计算预测损失,并分别计算预测框与真实框之间的纵横比作为惩罚项以达到提高回归精度以及加快收敛速度的目的,最后将改进后的YOLOv5目标检测模型应用于人脸检测进行验证。实验利用wideface人脸数据集训练,训练结果表明改进的YOLOv5目标检测算法训练中的损失只有0.013,较传统的YOLOv5目标检测算法损失减少约13.33%,准确率达到82.28%,较传统的YOLOv5目标检测算法提高2.6%。实验表明该目标检测算法能很好的应用于人脸检测中。 相似文献
16.
17.
针对木结构用锯材表面缺陷人工检测效率低下、精度低等问题。提出了一种改进的YOLOv4算法用于结构用锯材表面缺陷检测研究,在原YOLOv4算法基础上加入了自适应特征融合模块(AdaptivelySpatial FeatureFusion,ASFF),解决了不同特征尺度间的不一致性。为了验证算法的有效性,论文分别采用YOLOv3、YOLOv4及改进的YOLOv4算法对1052张结构用锯材表面缺陷样本图像进行对比测试。结果表明,与YOLOv3、YOLOv4算法相比,改进的YOLOv4算法平均测试精度均值分别提高了2.36%和19.9%,对单张含有不同大小目标的图片检测结果提高了13%。 相似文献
18.
近年来,计算机的算力越来越高,高性能辅助驾驶系统层出不穷。辅助驾驶主要包含感知、决策、控制三个部分。感知系统是整个辅助驾驶系统的“窗户”,因此感知的好坏直接影响到辅助驾驶的性能。在目标检测领域,深度学习得到越来越广泛的应用。深度学习的诞生伴随着更优化的算法、更高性能的计算能力、更大数据集的时代背景,以后的应用会深入到方方面面。本文基于YOLOv3算法,对算法的网络主体以及检测部分做改进和调优,引入SE注意力机制和DropBlock以获得对前车目标更高的检测精度。 相似文献
19.
针对工业棒料存在遮挡干扰时难以快速有效识别的问题,提出了一种基于改进 YOLOv4 的棒料识别算法。首先对 YOLOv4 进行轻量化改进,将改进的 Mobilenetv3 作为 YOLOv4 的主干网络,以减少模型参数量,提高算法的检测速度。然后提出在 YOLOv4 原损失函数基础上串联 Repulsion 损失函数,此新增损失函数包含 2 部分: RepGT 损失和 RepBox 损失,RepGT 损失函数计算目标预测框与相邻真实框所产生的损失值,用来减少棒料误检;RepBox 损失函数计算目标预测框与相邻的其他目标预测框所产生的损失值,用来减少棒料漏检。实验结果表明,改进算法的检测速度为 63 帧/ s ,比原 YOLOv4 算法提升了20 帧/ s ;识别准确率达到 97.85% ,比原 YOLOv4 算法提升了 1.62% 。 相似文献
20.
大型结构件中螺栓缺失往往会产生重大的安全隐患,而目前通过深度学习进行目标检测的设备通常部署繁琐、困难,为了保证检测的高效率并且足够轻量化的性能,提出一种通过改进YOLOv5进行模型训练,并将模型轻量化移植到移动端的方法,以实现螺栓的快速识别与个数缺失统计与报警。首先利用LabelImg软件对现有的螺栓数据进行标注,标注完成后对该数据集进行训练,再将得到的模型文件转化并降低位宽,转化为TensorFlow Lite(TFLite)模型文件,进而在安卓端进行部署。结果表明,将模型部署在小米MI 9 SE手机上,进行单目标检测时准确率可以达到98%,多目标检测时准确率可以达到97%,推理时间在40 ms左右,且报警功能可以正常使用,为螺栓缺失的检测提供了一种新的轻量化方法。 相似文献