首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对孔探设备检测航空发动机叶片损伤时会出现的漏检和人力物力耗费过大的问题,在YOLOv4网络的基础上提出一种基于扩张卷积和注意力机制的目标检测算法。使用CSPDarknet53作为特征提取网络;引入混合注意力机制并融合扩张卷积来增强网络的特征提取能力;采用Focal Loss函数优化原有的损失函数。实验结果表明:改进后算法网络的检测精度提高了5.71个百分点,更能满足发动机叶片损伤检测不漏检的需求。  相似文献   

2.
张新伟  陈东  闫昊  马兆昆 《工具技术》2023,(10):150-155
针对零件在密集遮挡等复杂场景下存在视觉识别难度大、检测精度低和实时性差的问题,提出YOLOv5零件目标检测的改进算法。在YOLOv5的主干网络中添加卷积注意力机制模块,进而增强算法对零件的特征提取能力;将抑制准则改为考虑真实框与预测框重叠区域且同时计算两个框之间中心点距离的DIoU-NMS,并以此作为后处理方法,进而提高零件检测精度。试验结果表明,相比原始YOLOv5算法,本改进算法将mAP@0.5提升1.6%,识别速度达58.8帧/s,可以更好地完成检测密集遮挡零件的任务,同时保证了实时性。  相似文献   

3.
文中针对目前输送带损伤检测大多是输送带撕裂且缺乏其他损伤类型研究的问题,提出一种改进YOLOv5的矿用输送带损伤检测方法。将SPD-Conv模块替换Conv模块中的卷积层,提升小目标的检测效果;在骨干特征网络与最后预测网络之前引入CBAM注意力机制,对重要的特征通道进行强化;最后,在YOLOv5的基础上引入高斯滤波器消除噪声干扰,提升算法目标检测效率。试验结果表明:改进后的YOLOv5目标检测网络在对输送带的撕裂、击穿、表面划伤、破损4种损伤类型的检测平均精度均值达92.3%,相较于YOLOv5算法提高了35.1%,检测速度达90帧/s,提高了20%,实现了对矿用输送带损伤的快速识别。  相似文献   

4.
为了实现柱形锂电池缺陷检测的实时性与高精度,提出一种基于改进YOLOv4的柱形锂电池表面缺陷检测算法。将主干网络由CSPDarkNet53替换为轻量化网络Mobile Netv1,使用K-means++算法对锂电池缺陷数据集先验框进行重新聚类,同时构建新的注意力机制ECSA模块关注重要信息。改进后的模型检测精度与检测速度均得到提升。  相似文献   

5.
带钢表面缺陷检测是生产过程智能检测的重要任务。针对目前带钢表面缺陷检测算法效率低、实时性差的问题,本文提出了基于卷积神经网络的轻量级目标检测器。该方法以YOLOv4-tiny模型为框架,针对带钢表面缺陷检测任务的特殊性,结合了多尺度检测与空间注意力机制的优化策略,在保证检测效率的同时提高了轻量级目标检测器的精度。实验证明,所提出的改进的YOLOv4-tiny模型能够精确地检测带钢表面缺陷,平均均值精度mAP(mean Average precision)为73.29%,并且每秒帧数FPS (Frames per second)达到163,满足实际工业落地的实时性要求。  相似文献   

6.
为解决常规深度学习方法检测轮毂内部缺陷存在模型尺寸大、参数多和精度低等问题,提出一种轻量化YOLOv4的轮毂内部缺陷检测算法。该算法采用MobileNetV3替换YOLOv4的主干特征提取网络,并利用深度可分离卷积模块对YOLOv4的PANet(path aggregation network)模块中的传统卷积进行了替换。同时,在PANet特征加强网络中加入通道注意力机制(SE)模块,提高了轮毂内部缺陷目标的识别精度。测试结果表明,所提算法检测精度为90.23%,权值文件为45.2 MB,检测速率为68.38帧/s。相较于常规模型性能有所提升,更适用于轮毂内部缺陷的快速、准确检测。  相似文献   

7.
针对岸边集装箱桥式起重机钢丝绳传统监测方式存在着故障识别率低的问题,提出了一种基于改进YOLOv5的岸边集装箱桥式起重机钢丝绳损伤检测方法。首先,在骨干特征提取网络部分引入注意力机制CBAM,对重要的特征通道进行强化;其次,选用损失函数EIOU对训练模型进行优化;最后替换原YOLOv5算法使用的加权NMS算法,提高边框的位置精度。实验结果表明,改进后的YOLOv5目标检测网络在钢丝绳损伤数据集上对断丝、磨损、畸变3种损伤类型的平均精度均值达90.3%,比原始的YOLOv5算法提高了3%,检测效果更优,实现了对钢丝绳更快速的识别,为今后开发岸边集装箱桥式起重机钢丝绳在线监测系统提供了一定的理论基础。  相似文献   

8.
针对现用PCB缺陷检测方法存在效率低、误检率高、通用性低、实时性差等问题,提出基于改进YOLOv4算法的PCB缺陷检测方法。使用改进二分K-means聚类结合交并比(IoU)损失函数确定锚框,解决预设锚框不适用PCB小目标缺陷检测的问题。引用MobileNetV3作为特征提取网络,提升对PCB小目标缺陷的检测性能,同时方便部署在现场轻量化移动端。引入Inceptionv3作为检测网络,利用多种卷积核进行运算满足PCB缺陷多类别的检测要求。以PCB_DATASET数据集为测试对象,将本文方法与Faster R-CNN、YOLOv4、MobileNetV3-YOLOv4等开展对比验证实验。结果表明,本文方法均值平均精度(mAP)为99.10%,模型大小为53.2 MB,检测速度为43.01 FPS,检测mAP分别提升4.88%、0.05%、2.01%,模型大小分别减少0、203.2、3.3 MB,检测速度分别提升29.93、6.37、0.79 FPS,满足PCB工业生产现场高检测精度和检测速度要求。  相似文献   

9.
为解决现有工业指针式仪表检测存在识别精度低、检测信息缺失、检测速度慢、成本较高的问题,提出一种改进的YOLOv3检测算法。新算法通过Kmeans++聚类获得先验框尺寸,选用轻量级网络Darknet-19 作为主干网络并减少预测层数,引入注意力机制同时调整样本损失函数,达到损失函数快速收敛的效果。消融实验结果表明,改进的YOLOv3算法对工业指针式仪表检测精度达98.16%,检测速度相比原版YOLOv3网络提升一倍,检测结果信息完整,训练消耗资源降低3倍。算法在鲁棒性、实时性、实用性方面优势明显。  相似文献   

10.
传统的金属表面缺陷检测是通过人工目测完成的,由于人工目测方法存在效率低下、漏检率高、劳动强度大等缺点,难以满足金属表面缺陷检测的效率和精度要求。针对工业生产过程中金属表面的小缺陷人工检测效率低等问题,提出了一种基于改进的YOLOv7算法的金属表面小缺陷检测方法。首先,建立了包含5种金属表面小缺陷的数据集;然后,设计了扩散卷积,利用步长改变了卷积核中特征点的间距,扩大了卷积层的感受野;设计了方向注意力模块,通过分割输入特征图,在水平方向和垂直方向上进行了特征提取,在通道维度上引入了注意力机制,根据通道的权重,完成了对输出通道数目的重新调整,增强了YOLOv7对小缺陷的位置感知;最后,研究了不同算法在金属表面小缺陷数据集上的目标检测结果,设计了消融实验,对改进策略进行了性能分析。研究结果表明:在相同训练策略下,与传统的YOLOv7算法模型相比,改进后的YOLOv7算法对小缺陷的检测效率为91 fps,平均检测精度为88.0%,较原模型提高了3.6%。在实际生产中可以采用该方法精确检测复杂背景下的金属表面小缺陷。  相似文献   

11.
针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8 模型的风电叶片表面损伤检测与识别方法.首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,在YOLOv8 模型中引入了动态数据增强算法Mosaic、Mixup及离线数据增强算法Albumentations,对训练数据集进行了扩充,解决了模型在有限数据集下的泛化性问题;最后,使用卷积注意力模块(CBAM)和梯度协调机制(GHM)/Focal loss算法等手段加强了模型的损伤检测能力,改进了样本分布不均衡问题,建立了一种先进的风电叶片表面损伤检测与识别方法,提升了YOLOv8 模型对叶片损伤的检测精度.研究结果表明:改进后的YOLOv8 模型在计算量和参数量都较低的情况下,其平均精度(AP)、平均召回率(AR)都超越了同等配置下的快速区域卷积神经网络(Faster R-CNN)模型.改进后的YOLOv8 模型在交并比(IoU)阈值为0.5 时的AP和AR分别达到了73.2%和58.8%,验证了该方法在风电叶片损伤检测方面具有一定的可靠性和有效性.  相似文献   

12.
针对无人机影像中道路小目标漏检和目标之间遮挡导致的目标检测精度低、鲁棒性差等问题,提出一种多尺度融合卷积注意力模块(Convolutional block attention module, CBAM)的YOLOv5道路目标检测算法,即YOLOv5s-FCC。首先,引入小目标感知层对模型进行多尺度改进,增加一个针对小目标的YOLO检测头以提高网络对道路中小目标的特征提取能力。其次,利用CBAM融合空间和通道信息以增强网络中的重要信息,通过将CBAM引入Backbone主干网络不同位置,以获得CBAM最佳融合位置。最后,采用CIo U作为损失函数,以提高边界框预测所需的计算速度和精度。在自建的无人机道路目标数据集上进行训练,结果表明,相较YOLOv5算法,YOLOv5-FCC算法可将mAP50和mAP50-95分别提高2.0%和4.2%。在VisDrone数据集上也验证了YOLOv5-FCC算法的有效性,并建立了基于无人机的道路目标检测系统,实现道路目标的自动检测。  相似文献   

13.
目前交通标志检测在自动驾驶和辅助驾驶等智能驾驶中扮演着重要的角色,其性能的好坏影响着车辆行驶的安全。针对交通标志图像背景复杂和检测目标小等问题,提出了一种基于改进YOLOv8的交通标志检测算法。首先使用全局注意力模块,通过引入空间注意力和通道注意力机制,对输入特征图进行全局关注,有效捕捉输入特征图的全局上下文信息,对特征图在通道和空间维度上进行加权,使模型能够更加关注图像中的交通标志,避免干扰信息的影响,提高网络检测精度;其次引入幻影卷积替换原网络中的普通卷积,减小网络模型体积的同时提高模型的检测速度;最后增加一个小目标检测层,保留特征图更多浅层细节信息,提高网络对小尺寸交通标志的检测能力。实验结果表明,改进后的算法在精确率、召回率和平均精确率上相比于原算法分别提升2.6%、1.1%和1.5%,检测速度满足实时性要求。  相似文献   

14.
针对仓储环境下叉车机器人托盘识别的应用场景,以及提高托盘目标检测的准确性和鲁棒性,提出了一种基于YOLOv3算法改进后的物体识别方法.运用K-Means++聚类方法重新聚类出更适合托盘检测的Anchor Box,通过分析托盘成像在图像坐标系中横轴和纵轴的密度分布,继而调整了划分网格机制,改进损失函数.并在运用数据增强手...  相似文献   

15.
针对目前铝材表面缺陷检测算法在实际工程应用中检测精度低以及不够轻量化难以部署等问题,文章提出一种基于改进YOLOv5s的铝材表面缺陷检测方法。该算法以经典YOLOv5s模型为基础,将ShufflenNetV2-Block算法融合到主干网络backbone中,降低模型的计算复杂性;然后添加SE注意力机制,使注意力集中于缺陷相关区域,更好地区分类别之间的差异,提高分类性能和检测效率;最后优化损失函数,采用SIoU(S-intersection over union)替代CIoU,提升网络定位精度。结果表明:针孔类和斑点类缺陷检测精度比原版YOLOv5分别提升了8.3%和8.4%,mAP值提高了6.4%,提高了缺陷检测精度且降低了模型的大小和所占内存,更加便于移动端部署,有效改善了制造过程中漏检问题。  相似文献   

16.
江琴  戴伟  唐鼎 《机械设计与研究》2021,37(4):150-153,158
白车身焊点的质量直接影响汽车的牢固度和安全性,而其检测目前以人工目测为主,其检测效率和检测质量都不足以满足汽车产业发展的要求.基于YOLOv4网络模型对白车身焊点的外观分类做深度学习并成功实现了焊点的识别与分类.并针对焊点图像的特点对YOLOv4模型进行了变体开发,提出一种针对小目标的、快速运算的YOLOv4变体.首先...  相似文献   

17.
随着计算机视觉行业的不断发展,基于卷积神经网络的目标检测算法也受到了研究人员的重视。针对传统的YOLOv5目标检测算法中的边界框回归损失函数GIOU存在当检测框与真实框呈包含的状态时会退化到传统IOU损失函数,以及当检测框和真实框相交时在垂直和水平两个方向上存在收敛速度慢的问题,提出一种改进的YOLOv5目标检测算法。在传统YOLOv5的基准网络中添加注意力机制,然后在边界框回归损失函数中引入真实框与预测框中心的欧式距离计算预测损失,并分别计算预测框与真实框之间的纵横比作为惩罚项以达到提高回归精度以及加快收敛速度的目的,最后将改进后的YOLOv5目标检测模型应用于人脸检测进行验证。实验利用wideface人脸数据集训练,训练结果表明改进的YOLOv5目标检测算法训练中的损失只有0.013,较传统的YOLOv5目标检测算法损失减少约13.33%,准确率达到82.28%,较传统的YOLOv5目标检测算法提高2.6%。实验表明该目标检测算法能很好的应用于人脸检测中。  相似文献   

18.
基于卷积神经网络的热轧钢条表面实时缺陷检测   总被引:1,自引:0,他引:1       下载免费PDF全文
热轧钢条的表面质量对成品至关重要,因此必须要严格控制热轧钢条的表面出现的缺陷.针对当前YOLOv4算法检测精度不高、对小范围信息表现较差等问题,提出一种改进YOLOv4自动检测方法.首先,将YOLOv4中特征提取网络CSPDarknet53换为轻量级深层神经网络MobileNetv3来提高检测速度,并且加强对检测目标特...  相似文献   

19.
针对木结构用锯材表面缺陷人工检测效率低下、精度低等问题。提出了一种改进的YOLOv4算法用于结构用锯材表面缺陷检测研究,在原YOLOv4算法基础上加入了自适应特征融合模块(AdaptivelySpatial FeatureFusion,ASFF),解决了不同特征尺度间的不一致性。为了验证算法的有效性,论文分别采用YOLOv3、YOLOv4及改进的YOLOv4算法对1052张结构用锯材表面缺陷样本图像进行对比测试。结果表明,与YOLOv3、YOLOv4算法相比,改进的YOLOv4算法平均测试精度均值分别提高了2.36%和19.9%,对单张含有不同大小目标的图片检测结果提高了13%。  相似文献   

20.
近年来,计算机的算力越来越高,高性能辅助驾驶系统层出不穷。辅助驾驶主要包含感知、决策、控制三个部分。感知系统是整个辅助驾驶系统的“窗户”,因此感知的好坏直接影响到辅助驾驶的性能。在目标检测领域,深度学习得到越来越广泛的应用。深度学习的诞生伴随着更优化的算法、更高性能的计算能力、更大数据集的时代背景,以后的应用会深入到方方面面。本文基于YOLOv3算法,对算法的网络主体以及检测部分做改进和调优,引入SE注意力机制和DropBlock以获得对前车目标更高的检测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号