首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对汽车转向的轻便性和稳定性问题,对分布式驱动电动汽车EPS进行了研究。设计了助力电机电流的模糊PID控制算法,建立了以Adams/Car为平台的分布式驱动电动汽车模型,提出了一种基于Car和Matlab/Simulink的机电一体化联合仿真方法,利用联合仿真模型的闭合控制回路对分布式驱动电动汽车的转向轻便性进行了双移线工况仿真,对操纵稳定性进行了转向盘角阶跃输入和低速转向回正仿真试验,分析了转向盘力矩、横摆角速度和车辆侧向加速度响应曲线。仿真研究结果表明:EPS控制下转向轻便性和操纵稳定性分别提高35.5%和13.9%,与PID控制相比,所设计的模糊PID控制提高了汽车转向综合性能。  相似文献   

2.
以提高轮毂电机驱动电动汽车转向稳定性为目的 ,针对传统PID算法扰动抑制能力不足,利用神经网络提高基于PID的横摆力矩和滑移率控制系统的稳定性,并针对神经网络收敛速度慢、易陷入局部最优解的问题,提出利用粒子群算法对控制器参数进行优化并对权值进行改进的神经网络PID方法.以四轮轮毂电机独立驱动电动汽车为研究对象,以跟踪期望的横摆角速度为控制目标,基于Carsim/Simuink联合仿真平台,对建立的四轮独立驱动电动汽车横向运动学模型及提出的控制策略进行不同工况下的对比验证,结果表明提出的控制方法优化了传统PID控制算法,振动频率幅值小、能更好地逼近理想值,可改善车辆转向性能、提高稳定性以避免事故的发生.  相似文献   

3.
为实现双电机四轮驱动电动汽车的驱动防滑转,采用基于径向基函数单神经元PID自适应控制算法的转矩分配策略,分析了双电机四轮驱动电动汽车系统结构与驱动防滑转控制的工作原理,根据车辆行驶过程中实时滑移率与当前路面的最优滑移率,通过控制系统来控制前、后电机转矩分配,在不同路面上进行了仿真分析。结果表明,采用该控制策略,能实现各种工况下的驱动防滑转控制,并能够判断车速,根据当前车辆所需性能实现不同车速的驱动防滑转控制。  相似文献   

4.
为满足微型纯电动汽车转向轻便和高速稳定行驶的性能需求,进行了转向系统的电动助力设计优化。综合考虑转向系统几何结构、电机助力参量等因素的影响,实现了电动助力系统参数化并建立了机电耦合数学模型。构建考虑车速影响的助力特性曲线并对函数精确度进行控制,提高拟合准确度,确定电机力矩控制特性。电动助力系统应用基于模糊自适应PID控制策略,控制电机电流误差,减少电流偏差,提高辅助力的精准度。利用建立的机电耦合数学模型、电机转矩控制特性和PID控制策略,在MATLAB/Simulink和ADAMS/CAR中构建机械与助力电机控制模型,进行联合仿真,与非助力系统进行对比分析了连续转向、高速行驶转向和大角加速度转向3种行驶工况的仿真结果,结果表明:电动助力系统在中低速蛇形行驶中,减轻约48%转向力矩,有效实现汽车的转向轻便,在高速行驶转向中缩短了车辆达到高速稳定行驶约20%的时间。  相似文献   

5.
针对四轮独立驱动电动汽车转向控制效果与所搭建车辆动力学模型参数紧密相关的问题,提出一种车辆动力学模型参数自校正转向控制系统设计方法。采用递推最小二乘法对车辆动力学模型关键参数进行实时辨识,有效地解决了车辆动力模型参数时变及非线性扰动影响的问题。设计加权最小方差自校正车辆转向控制器,实现对车辆转向横摆稳定性进行实时优化的目标。通过建立加权最小方差控制目标函数,计算出优化横向稳定性所需附加横摆力矩,并实时修正车辆四轮独立驱动转矩,有效提升了四轮独立驱动电动汽车转向工况操纵稳定性。搭建CarSim与Matlab/Simulink联合仿真平台,对所设计自校正四轮转向控制系统进行仿真分析验证。仿真结果表明,该加权最小方差自校正转向控制器能有效提升四轮独立驱动电动汽车的行驶稳定性。  相似文献   

6.
为提高车辆在转向过程中的侧向稳定性,以车辆行驶过程中的横向载荷转移率作为控制目标,建立基于横向载荷转移率的车辆侧向稳定性动态预测方法,提出滑模变结构控制器结合差动制动控制原理实时调控各车轮制动力的方法,改善车辆在行驶过程中的转向性能及制动性能。采用CarSim-Matlab/Simulink进行联合仿真以验证该方法的有效性,验证过程选取Fish-Hook和角阶跃两种工况进行测试分析,结果表明,所搭建的预测及控制算法能有效预测到车辆的侧向运动状态并改善车辆的侧向稳定性。  相似文献   

7.
为了提高智能汽车行驶安全性,提出了基于人工水滴算法的避障路径规划和自适应路径跟踪控制方法.在路径规划方面,模拟水往低处流过程,提出了基于人工水滴算法的路径规划方法,经验证,人工水滴算法在动静态环境下都能够规划出避障路径.在路径跟踪方面,设计了转向控制与速度自适应控制的综合控制器;基于车辆线性二自由度模型,提出了模型预测转向控制;结合预瞄模型和二次规划方法,提出了速度随行驶路况自适应控制方法.经绕桩实验验证,本文提出的综合控制方法最大横向跟踪误差为0.1m,文献[11]提出的控制方法最大横向误差为0.6m,是本文方法的6倍,说明了综合控制器在路径跟踪控制中的精确性,且综合控制器的横摆角速度、侧向加速度均在约束范围内,满足国家标准对车辆的安全性要求.  相似文献   

8.
针对分布式电动汽车稳定性控制问题,提出了分布式电动汽车的横摆力矩控制与主动转向协调控制策略。采用分层控制的思想,输入信号层设计线性二自由度模型,根据车辆状态求解横摆角速度与质心侧偏角期望值。决策控制层应用模糊理论设计两输入两输出模糊控制器。分配执行层针对车速的不同设计四轮转向策略。选取单移线和双移线仿真工况,通过MATLAB/Simulink与CarSim联合仿真对控制策略进行了验证。结果表明:横摆力矩控制与主动转向协调控制策略能够有效改善汽车操纵稳定性和提高汽车行驶安全性。  相似文献   

9.
本文提出了一种基于模糊PID控制对发动机输出转矩进行控制的方法来防止车轮抱死的控制策略,对电动汽车在不同附着系数的路面上行驶时的动力控制系统展开深入研究。应用MATLAB仿真软件对这一系列进行了建模和仿真,通过对控制策略的仿真,表明确实可以通过控制系统的改进而提高电动汽车的安全性和操纵稳定性。  相似文献   

10.
基于模糊PID的车辆侧倾主动控制仿真研究   总被引:2,自引:0,他引:2  
在ADAMS/Car下,建立了前后悬架都装有主动横向稳定杆的95自由度虚拟整车模型.采用模糊自适应PID控制策略,在Matlab/Simulink环境中对车辆抗侧倾性能进行了联合仿真,实现了PID控制过程中参数的在线整定.仿真结果表明,模糊自适应PID控制具有较强的自适应和抗干扰能力,有效地减小了车身侧倾角,在保证乘坐舒适性的同时提高了车辆的行驶稳定性.  相似文献   

11.
针对四轮轮毂电机电动车横摆力矩控制问题,论文确定了整车横摆力矩分层控制结构,基于模糊控制理论设计了附加横摆力矩决策控制器,利用四轮驱动力矩独立可控的优势,采用规则驱动力分配方法对四轮驱动力矩进行分配。通过选取低附着、变车速、方向盘转角为增幅正弦输入的开环实验工况,基于Car Sim与Matlab/Simulink联合仿真,对控制方法进行了验证,并与PID控制效果进行了对比分析。仿真结果表明:所研究的模糊控制方法能够提高车辆行驶稳定性,且比PID控制能更有效地提高汽车的行驶稳定性。  相似文献   

12.
针对传统单一控制算法无法有效协调智能汽车不同转向工况下横向控制性能要求的问题,根据智能汽车在高速和低速转向工况下呈现出的系统特性差异,设计了一种基于PID控制和模型预测控制的智能汽车路径跟踪混合控制策略。该控制策略在低速模式下采用PID控制,在高速模式下则采用模型预测控制,通过车辆速度确定路径跟踪控制模式,进而设计带稳定监督的控制模式切换机制,实现了横向控制系统的平滑切换。基于Carsim和MATLAB/Simulink仿真平台对所设计的智能汽车路径跟踪混合控制策略进行了仿真验证,在此基础上,进一步完成了实车试验。仿真和实车试验结果表明,所设计的混合控制策略能够保证智能汽车不同速度下的路径跟踪性能,具有较好的跟踪精度、实时性和车辆行驶稳定性。  相似文献   

13.
针对电动汽车在低附着路面行驶时驱动轮滑转问题,对后轮独立驱动电动汽车进行了驱动防滑控制研究,提出了基于模糊路面识别的自适应模糊PID控制方法,提高汽车在极限工况下车辆的稳定性。首先根据轮毂电机转矩、转速易于测得的优势,设计了基于Burckhardtμ-S模型的模糊路面识别算法。根据车辆运动状态,路面识别算法对当前路面和最优滑转率进行辨识。然后采用自适应模糊PID控制器将驱动轮滑转率实时控制在最优滑转率附近。最后选择典型工况,基于Car Sim与Matlab/Simulink联合仿真实验对控制方法进行了验证。仿真结果表明,该模糊路面识别算法能够较好识别路面附着系数和其最优滑转率;基于路面识别的驱动防滑控制具有良好的控制效果,提高了极限工况下车辆的稳定性与动力性。  相似文献   

14.
对后轮毂电机驱动电动汽车的电子差速控制策略进行研究,提出了一种基于滑转率控制的P-模糊PID双模态控制方法,建立了整车动力学模型和电机模型,设计了P-模糊PID控制器,降低电动汽车两侧车轮的滑转率,并趋于理想值。利用Matlab/Simulink和Car Sim建立了联合仿真模型。仿真对比了常规的模糊控制方法,结果表明,系统动态响应速度提高,并且没有超调,提升了电动汽车的动力学特性,尤其是在低附着系数路面上的转向及加速行驶时的控制效果更为明显。  相似文献   

15.
针对轮毂式电动汽车在转弯时存在驱动轮相对滑移率受外界干扰大的问题,提出一种基于相对滑移率的电动汽车电子差速控制方法,设计了基于最优控制和滑模控制的线性二次型最优滑模控制器。采用前轮转向后轮驱动的轮毂式电动汽车作为研究对象,针对其电动汽车电子差速控制系统的操纵稳定性特点,构建包含电动电动汽车纵向、侧向和横向运动的三自由度整车仿真模型,经过线性模型化将电动汽车的驱动相对滑移率作为反馈控制量,通过控制汽车的转矩协调百分比来控制驱动轮的输出转矩,从而控制了驱动轮的相对滑移率。仿真结果表明,该控制方法实现了车辆在转弯过程中驱动轮的相对滑移率最小,且提高了电子差速系统的抗干扰能力,有效地增强了系统的鲁棒稳定性,提高了车辆的行驶安全性。  相似文献   

16.
提出了一种融合车辆稳定性的路径跟踪控制策略,以提高分布式驱动电动汽车在高速、低附着等危险行驶工况下的路径跟踪精度和车辆稳定性,该控制策略包括路径跟踪控制层、稳定性控制器决策层、驱动轮转矩分配层。针对LQR路径跟踪控制器在高速大曲率工况下跟踪精度不足的问题,采用闭环PID矫正驾驶员模型补偿车辆前轮转角,并设计稳定性控制器用以跟踪车辆理想参考模型,基于模型预测控制算法决策出附加横摆力矩,同时以轮胎负荷率最小为目标优化车轮驱动转矩分配。利用自主开发的分布式驱动电动试验车分别在高速高附着和高速低附着双移线工况进行试验。结果表明:相对于只运用闭环PID矫正的LQR路径跟踪控制器进行路径跟踪,车辆在干燥的混凝土路面以90 km/h速度行驶时,融合车辆稳定性的路径跟踪精度的横向均方根误差降低了29.7%;车辆在潮湿沥青路面以70 km/h速度行驶时,均方根误差降低了10.3%。所提控制策略能够提高车辆的路径跟踪精度,满足车辆在危险行驶工况下的横摆稳定性。  相似文献   

17.
针对四轮毂电机独立驱动汽车各轮力矩解耦可控的特点,分析车辆转向受力对四轮独立驱动电动汽车行驶稳定性的影响,提出四轮独立驱动电动汽车转向稳定性控制策略,为四轮独立驱动电动汽车四轮转矩协调控制,提升整车行驶稳定性提供了思路.基于模型跟踪控制的思想,采用分层控制思想设计控制器,控制器包含参考模型、顶层控制器、底层控制分配器.采用带质心侧偏角约束的2自由度车辆模型作为参考模型,设计出一种新的非线性联合滑模变结构主动控制的顶层控制器,该方法可以在一定程度上实现车辆横摆角速度和质心侧偏角的解耦控制,避免了横摆角速度和质心侧偏角的较大变化,从而保证汽车稳定性.在底层控制分配器中,采用基于轮胎稳定裕度最大化的最优分配方法.在Carsim软件中,搭建四轮轮毂电机独立驱动电动汽车模型,在Simulink软件中搭建控制策略模型.针对双移线工况,Carsim/Simulink联合仿真的结果表明,滑模变结构控制器具有较好的收敛性,控制分配模块可以实现四轮力矩的优化分配,能够提升车辆在极限工况下的稳定性.研究将为轮毂电机驱动车辆分布式协调控制提供理论支撑.  相似文献   

18.
为减小车辆在前轮转向系统失效的负面影响,保证转向系统的瞬态控制性能,本文提出差动转向控制与横向稳定性控制相结合的控制方法,通过调节左右轮毂电机转矩形成横摆力矩,实现对系统完全失效车辆的转向控制与横向稳定性控制。首先设计基于LQR差动转向控制器跟踪参考前轮转角与参考横摆角速度,保证车辆轨迹跟踪能力,然后设计基于模糊PID横向稳定性控制器跟踪参考质心侧偏角,保证车辆横摆稳定性,两者构成双闭环控制系统将控制量最终转化为横摆力矩,实现车辆的集成控制。最后通过Simulink-Carsim联合仿真验证,仿真结果表明差动转向系统能够在前轮转向系统失效情况下实现车辆转向控制,并在横向稳定性控制系统的作用下有效地提高了车辆瞬态控制性能。  相似文献   

19.
为实现轮毂式电动汽车在弯道的稳定转向,解决传统控制方法对汽车行驶速度的局限性,提出一种高-低速复合电子差速控制方法。当汽车处于低速行驶状态时,根据Ackermann转向模型获取驱动轮期望转速,提出一种模糊PID控制方法,实现轮速的稳定跟踪;当汽车处于高速行驶状态时,以驱动轮的相对滑移率作为反馈控制量,提出一种基于模糊逼近的滑移率优化控制方法,无需建立精确的系统状态空间模型,同时根据LQR理论保证了汽车驱动轮相对滑移率最小。Matlab/Carsim联合仿真证明,所提出的高-低速复合控制方法能够使汽车在不同行驶速度下实现稳定转向。  相似文献   

20.
通过建立EPS系统的动力学方程,在ADAMS/Car模块建立多体动力学整车模型,并利用MATLAB/Simulink建立两种控制算法下的仿真模型,并对汽车不同行驶工况下的操纵稳定性进行了仿真分析。对比分析结果表明:配备EPS系统的车辆在低速回正工况下具有较好的操纵稳定性,改善了汽车的安全行驶性能,同时模糊PID控制比传统的PID控制更能使系统获得最佳的转向助力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号