首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高锰酸钾改性花生壳,利用改性花生壳处理含铜废水。花生壳改性实验结果表明,其最佳工艺条件为:改性温度为40℃,改性时间为180 min,液固比为13 mL/g。改性花生壳处理含铜废水实验结果表明,其最佳工艺条件为:吸附温度为30℃,吸附时间为100 min,改性花生壳用量为1.0 g。在此条件下可使50 mL含铜废水中铜的浓度由50 mg/L降到1.4 mg/L,铜去除率达97.2%。  相似文献   

2.
李晶  崔丽华  贾冬梅  刘元伟 《应用化工》2013,42(6):1062-1064
用丁二酮肟(DMG)修饰经十六烷基三甲基溴化铵(CTAB)改性的人造沸石吸附模拟废水中的Ni2+。结果表明,吸附时间为50 min,改性沸石用量为1.1 g,Ni2+初始浓度为20 mg/L,pH值为7.0,温度为35℃,溶液体积为25 mL时,吸附率达98%以上,且受其他干扰离子(Cu2+、Pb2+)的影响不大。  相似文献   

3.
厌氧颗粒污泥对水中铅离子的吸附与解吸附   总被引:3,自引:1,他引:2  
采用厌氧颗粒污泥对废水中的Pb2+进行了吸附和解吸附研究. 结果表明,影响Pb2+吸附的主要因素是溶液pH、污泥投加量、Pb2+的初始浓度及接触时间. 处理25 mL Pb2+浓度为100 mg/L的(pH 4~5)模拟废水时,投加0.1 g污泥,污泥吸附容量为121.1 mg/g,对废水中Pb2+的吸附率可达99.5%. 未经烘干处理的颗粒污泥有更强的吸附能力,其吸附过程符合Lagergren二级动力学方程,吸附等温线可由Langmuir和Freundlich方程很好地拟合,相关性良好. 吸附Pb2+后的厌氧颗粒污泥用0.1 mol/L硝酸经3次解吸后,解吸率可达93.11%.  相似文献   

4.
《应用化工》2022,(5):1088-1091
用柠檬酸改性花生壳处理含Cr(VI)废水,探讨柠檬酸浓度、花生壳颗粒度、反应时间、反应温度和花生壳用量等因素对改性效果的影响。结果表明,最佳改性工艺为:在100 mL的溶液中,柠檬酸浓度为10%,花生壳用量为3 g,花生壳颗粒度为80目,反应温度为室温(25℃左右),反应时间为3 h,用1.0 g改性花生壳在pH为2的条件下,处理150 mL含Cr(VI) 25 mg/L的废水,去除率为89.35%,吸附量为3.35 mg/g。  相似文献   

5.
以粉煤灰为原料,探索用硫酸改性粉煤灰负载壳聚糖的最佳工艺条件及其处理印染废水的效果。改性的最佳工艺条件为:硫酸浓度为5mol/L、酸浸时间120min、固液比为20g粉煤灰/100mLH2SO4。负载的最佳条件为每10g粉煤灰负载0.4g壳聚糖。用其吸附处理印染废水的最佳条件为吸附剂用量为0.01g/mL、吸附时间为40min、吸附温度为30℃、pH=5、振荡速率为200r/min,此时最大脱色率为58.5%。实现了对粉煤灰的资源化利用,消除了粉煤灰对环境的危害,可作为印染废水的预处理,以减少后续处理的负荷。  相似文献   

6.
用柠檬酸改性花生壳处理含Cr(VI)废水,探讨柠檬酸浓度、花生壳颗粒度、反应时间、反应温度和花生壳用量等因素对改性效果的影响。结果表明,最佳改性工艺为:在100 mL的溶液中,柠檬酸浓度为10%,花生壳用量为3 g,花生壳颗粒度为80目,反应温度为室温(25℃左右),反应时间为3 h,用1.0 g改性花生壳在pH为2的条件下,处理150 mL含Cr(VI) 25 mg/L的废水,去除率为89.35%,吸附量为3.35 mg/g。  相似文献   

7.
环氧氯丙烷改性花生壳对次甲基蓝的吸附研究   总被引:1,自引:0,他引:1  
以花生壳为原料,环氧氯丙烷为改性剂,对花生壳进行改性制备吸附剂,并对其吸附次甲基蓝的性能作了较系统的研究。结果表明,在 2.0 g 花生壳中分别加入 1.25 mol/L 的NaOH溶液 45 mL 和环氧氯丙烷 25 mL,控制温度 40℃,搅拌反应 30 min,经过滤、水洗干燥后得到改性的花生壳,用此改性的花生壳吸附次甲基蓝的最佳条件为:处理 100 mg/L 的次甲基蓝溶液 50 mL,用 0.2 g 改性花生壳,pH值在6.48,搅拌吸附 60 min,在此条件下吸附率可达 99%,吸附后的花生壳用 0.5 mol/L NaOH溶液再生,重复使用3次对次甲基蓝的吸附率在 96% 以上;未改性花生壳对次甲基蓝的吸附率仅为 82%。  相似文献   

8.
探讨了经Al~(3+)改性的蛭石对含磷废水的吸附性能,考察了反应的pH值、温度、时间、吸附剂的用量等因素对改性蛭石吸附性能影响。结果表明:含1.0%Al~(3+)的改性蛭石对磷有较强的吸附去除作用。在300r/min条件下搅拌吸附30min,当Al~(3+)改性蛭石的用量为60g/L时,对40mg/L的含磷废水的吸附量达0.45mg/g,对含磷量不大于100mg/L的废水,其去除率大于50%。  相似文献   

9.
曾婧  荀久玉 《江西化工》2020,(2):126-129
本文主要对花生壳的改性以及改性花生壳处理处理含磷废水进行了研究。花生壳经预处理后,以盐酸作为改性剂,对花生壳进行改性,再用改性花生壳作为吸附剂处理含磷废水。花生壳改性实验结果表明,其最佳工艺条件为:改性温度为60℃、改性时间为180min、液固比为13mL/g。改性花生壳处理含磷废水实验结果表明,其最佳工艺条件为:吸附温度为35℃、吸附时间为90min、改性花生壳用量为0. 6g、废水p H为6。在此条件下,可使50mL含磷废水中磷的浓度由50mg/L下降到1. 4mg/L,磷的去除率达97. 2%。  相似文献   

10.
本文主要对花生壳的改性以及改性花生壳处理含铬(Ⅵ)废水进行了研究。花生壳经预处理后,以硝酸作为改性剂,对花生壳进行改性,再用改性花生壳作为吸附剂处理含铬废水。花生壳改性实验结果表明,其最佳工艺条件为:改性时间为120min、改性温度为45℃、液固比16mL/g。改性花生壳处理含铬废水实验结果表明,其最佳工艺条件为:吸附时间为120min、吸附温度为35℃、废水pH为3、改性花生壳用量为1.2g。在此条件下可使50mL模拟含铬废水中铬的浓度由50mg/L降到3mg/L,铬的去除率达94%。  相似文献   

11.
采用超声波辅助手段,对改性亚麻吸附甲基紫进行了研究,通过单因素变量和正交实验选出优化组合。结果表明,改性亚麻的吸附量和去除率均高于未改性亚麻。亚麻改性的优化条件是:改性时间100 min、改性温度40℃,经1 mol/L的氢氧化钠改性之后又经0.2 mol/L的L-苹果酸改性;其吸附25 mL甲基紫溶液的优化条件是:吸附时间100 min、温度50℃、吸附剂投加量0.3 g、甲基紫初始质量浓度80 mg/L,在此条件下对甲基紫的吸附量和去除率分别为39.47mg/g和99.67%。正交实验得出最大吸附量优化组合为改性温度40℃、吸附时间120 min、吸附剂用量0.1 g,吸附量39.97 mg/g;最大去除率的优化组合为改性温度60℃、吸附时间120 min、吸附剂用量0.5 g,此时去除率99.67%。  相似文献   

12.
李嘉伟 《广东化工》2012,39(6):162-163,161
本研究用粉煤灰处理生活废水,得出在反应条件为:粉煤灰用量15 g,吸附时间25 min,反应温度30℃,pH为3时,废水中污染物去除效果最好。当粉煤灰用2 mol/L的硫酸改性后,废水的处理效果最理想,CODCr去除率达84%以上。用废制废,变废为宝的环保方法,是环保工作者值得采用的污染物处理手段。  相似文献   

13.
环氧氯丙烷改性花生壳吸附水中Cu~(2+)的研究   总被引:1,自引:0,他引:1  
利用环氧氯丙烷对花生壳改性制备吸附剂,并用其吸附水溶液中Cu2+。实验结果显示,花生壳的改性条件为:花生壳5.0 g,浓度为1.5 mol/L NaOH溶液100 mL,环氧氯丙烷5 mL,反应温度30℃,反应40 min;用上述条件改性花生壳0.3 g,吸附初始浓度50 mg/LCu2+溶液,控制溶液的pH为5.0,吸附时间3.0h,对Cu2+吸附率可达96.0%,高于未改性花生壳的70.4%,使吸附率提高36.4%。  相似文献   

14.
采用盐酸改性的硅藻土处理含苯胺废水。硅藻土改性实验结果表明,其最佳条件为:改性剂浓度为4mol/L、改性时间为40min、改性温度为35℃。改性硅藻土处理含苯胺废水实验结果表明,其最佳条件为:改性硅藻土加入量为2. 0g、吸附温度为35℃、吸附时间为40min。在此条件下,可使50mL废水中苯胺的浓度由50mg/L降至4. 6mg/L,苯胺去除率可达到90. 5%。  相似文献   

15.
香蕉皮吸附活性艳橙的研究   总被引:2,自引:0,他引:2  
探讨了用改性香蕉皮吸附处理活性艳橙模拟废水的效果,结果表明:1∶1(体积比)硫酸改性香蕉皮的吸附性能较好。用改性香蕉皮吸附活性艳橙的最适宜条件为:常温、pH=2,吸附时间30 min,振荡速率190r/min,吸附剂用量3.5 g/L,初始浓度为5 mg/L,此时最大脱色率达96.7%,处理后的滤液为无色。  相似文献   

16.
为进一步提高粉煤灰对废水中Pb2+的吸附能力,研究将碳酸钠和粉煤灰按质量比1∶3进行混合,焙烧得到改性粉煤灰,通过L16(45)正交优化试验确定了处理含铅废水较优的工艺条件,对改性粉煤灰进行了电镜扫描,从微观层面解释了其吸附能力增加的原因。结果表明,较优的工艺条件为:改性温度为850℃,废水p H值为8,吸附时间为50 min,改性粉煤灰投加量为3 g,Pb2+的质量浓度为330 mg/L。处理后的废水可达到相关排放标准的要求,具有较好的经济效益和社会效益。  相似文献   

17.
实验采用紫茎泽兰为原材料进行纤维素改性,研究紫茎泽兰纤维素磷酸酯的最佳制备条件及对含Cu2+模拟废水的吸附性能。结果表明,1 g紫茎泽兰粉末中加入ω(NaOH)=20%溶液,在室温下碱化50 min,水洗至中性,得到碱纤维;称取1 g碱纤维,加入ω(H3PO4)=20%溶液,室温浸润12 h,过滤;滤饼加入ω(H3PO4)=85%溶液1 mL, 0.1 g尿素,甲苯4 mL,在50℃下反应50 min,得到产品。用其处理100 mL50mg/L的Cu2+模拟废水,吸附率达96%。  相似文献   

18.
采用微波酸活化的方法对粉煤灰进行了改性,并将Fenton试剂氧化和改性后的粉煤灰吸附联合处理焦化废水。考察了Fenton氧化及活化后的粉煤灰吸附过程中的主要因素对降解效果的影响,实验结果表明:在反应温度为60 ℃、初始pH=3、双氧水浓度为100 mmol/L、铁(Ⅱ)质量浓度为0.4 g/L的最佳条件下,加入30 g/L的活化粉煤灰、经过120 min处理,焦化废水的COD去除率可达92%。  相似文献   

19.
苯胺改性核桃壳可显著提高核桃壳对Pb(Ⅱ)的吸附率。详细探讨了改性工艺的影响因素如盐酸介质浓度、苯胺单体浓度、n(过硫酸铵)/n(苯胺)、改性温度、改性时间、核桃壳颗粒度以及核桃壳用量等对改性效果的影响。在单因素实验的基础上,通过正交实验和对比实验对改性工艺进行了进一步优化。得出最适宜的改性工艺为:在150 mL的改性溶液中,苯胺用量为0.4 mol/L,核桃壳用量为6 g,n(过硫酸铵)/n(苯胺)为1∶1,盐酸介质浓度为1.0 mol/L,改性温度为20℃,改性时间为2 h。用此改性工艺制备得到的苯胺改性核桃壳1 g处理150 mL、200 mg/L的含Pb(Ⅱ)模拟废水,对Pb(Ⅱ)的吸附率为95.86%,吸附容量为28.76 mg/g。  相似文献   

20.
硝酸改性花生壳对Pb2+的吸附研究   总被引:8,自引:0,他引:8  
以花生壳为原料、HNO3为改性剂,对花生壳进行改性制备吸附剂,并研究了其吸附水中Pb2 的性能.结果表明,在2.0 g花生壳中加入体积分数为10%的HNO3溶液25 mL、控制温度80℃、搅拌3 h,得到改性的花生壳;用此改性花生壳吸附Pb2 的最佳条件为:0.20 g改性花生壳、97.5 mg·L-1的Pb2 溶液25 mL、pH值5.0、搅拌吸附60 min,在此条件下吸附率可达97%;吸附后的花生壳用0.5 mol·L-1的HCl溶液再生,重复使用2次对Pb2 的吸附率在92%以上;同时,比较了改性花生壳和未改性花生壳对Pb2 的吸附性能,未改性花生壳对Pb2 的吸附率为87%,改性花生壳对Pb2 的吸附率为96%,通过HNO3改性使花生壳的吸附性能得到提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号