首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the large data size of 3D MR brain images and the blurry boundary of the pathological tissues, tumor segmentation work is difficult. This paper introduces a discriminative classification algorithm for semi-automated segmentation of brain tumorous tissues. The classifier uses interactive hints to obtain models to classify normal and tumor tissues. A non-parametric Bayesian Gaussian random field in the semi-supervised mode is implemented. Our approach uses both labeled data and a subset of unlabeled data sampling from 2D/3D images for training the model. Fast algorithm is also developed. Experiments show that our approach produces satisfactory segmentation results comparing to the manually labeled results by experts.
Changshui ZhangEmail:

Yangqiu Song   received his B.S. degree from Department of Automation, Tsinghua University, China, in 2003. He is currently a Ph.D. candidate in Department of Automation, Tsinghua University. His research interests focus on machine learning and its applications. Changshui Zhang   received his B.S. degree in Mathematics from Peking University, China, in 1986, and Ph.D. degree from Department of Automation, Tsinghua University in 1992. He is currently a professor of Department of Automation, Tsinghua University. He is an Associate Editor of the journal Pattern Recognition. His interests include artificial intelligence, image processing, pattern recognition, machine learning, evolutionary computation and complex system analysis, etc. Jianguo Lee   received his B.S. degree from Department of Automatic Control, Huazhong University of Science and Technology (HUST), China, in 2001 and Ph.D. degree in Department of Automation, Tsinghua University in 2006. He is currently a researcher in Intel China Reasearch Center. His research interests focus on machine learning and its applications. Fei Wang   is a Ph.D. candidate from Department of Automation, Tsinghua University, Beijing, China. His main research interests include machine learning, data mining, and pattern recognition. Shiming Xiang   received his B.S. degree from Department of Mathematics of Chongqing Normal University, China, in 1993 and M.S. degree from Department of Mechanics and Mathematics of Chongqing University, China, in 1996 and Ph.D. degree from Institute of Computing Technology, Chinese Academy of Sciences, China, in 2004. He is currently a postdoctoral scholar in Department of Automation, Tsinghua University. His interests include computer vision, pattern recognition, machine learning, etc. Dan Zhang   received his B.S. degree in Electronic and Information Engineering from Nanjing University of Posts and Telecommunications in 2005. He is now a Master candidate from Department of Automation, Tsinghua University, Beijing, China. His research interests include pattern recognition, machine learning, and blind signal separation.   相似文献   

2.
A study on bilateral filter for denoising reveals that more informative the filters are, better is the result expected. Moreover, getting precise information of the image with noise is a difficult task. In the current work, a rough set theory (RST) based approach is used to derive pixel level edge map and class labels which in turn are used to improve the performance of bilateral filters. RST handles the uncertainty present in the data even under noise. The basic structure of existing bilateral filter is not changed much, however, boosted up by prior information derived by rough edge map and rough class labels. The filter is extensively applied to denoise brain MR images. The results are compared with that of the state-of-the-art approaches. The experiments have been performed on two real (normal and pathological disordered) human MR databases. The performance of the proposed filter is found to be better, in terms of benchmark metrics.  相似文献   

3.
磁共振(Magnetic Resonance,MR)图像的诊断是公认的确认肝脏有无肿瘤等器质性病变的金标准方法,因此肝脏的正确分割对计算机辅助诊断有非常重要的意义。由于脏器组织浸润和个体差异,在肝脏分割实现方法方面有一定难度,目前尚没有通用的医学分割方法。在既有研究的基础上,提出了基于四叉树的迭代分割算法,得到MR图像中肝脏的自动分割结果。实验分割结果表明这种方法的可行性和优势,并为后续的肿瘤提取奠定基础。  相似文献   

4.

Objective

Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis, and hence has attracted extensive research attention. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited robustness to outliers, over-smoothness for segmentations and limited segmentation accuracy for image details. To further improve the accuracy for brain MR image segmentation, a robust spatially constrained fuzzy c-means (RSCFCM) algorithm is proposed in this paper.

Method

Firstly, a novel spatial factor is proposed to overcome the impact of noise in the images. By incorporating the spatial information amongst neighborhood pixels, the proposed spatial factor is constructed based on the posterior probabilities and prior probabilities, and takes the spatial direction into account. It plays a role as linear filters for smoothing and restoring images corrupted by noise. Therefore, the proposed spatial factor is fast and easy to implement, and can preserve more details. Secondly, the negative log-posterior is utilized as dissimilarity function by taking the prior probabilities into account, which can further improve the ability to identify the class for each pixel. Finally, to overcome the impact of intensity inhomogeneity, we approximate the bias field at the pixel-by-pixel level by using a linear combination of orthogonal polynomials. The fuzzy objective function is then integrated with the bias field estimation model to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously.

Results

To demonstrate the performances of the proposed algorithm for the images with/without skull stripping, the first group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Jaccard similarity on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results demonstrate that the proposed algorithm can produce higher accuracy segmentation and has stronger ability of denoising, especially in the area with abundant textures and details.

Conclusion

In this paper, the RSCFCM algorithm is proposed by utilizing the negative log-posterior as the dissimilarity function, introducing a novel factor and integrating the bias field estimation model into the fuzzy objective function. This algorithm successfully overcomes the drawbacks of existing FCM-type clustering schemes and EM-type mixture models. Our statistical results (mean and standard deviation of Jaccard similarity for each tissue) on both synthetic and clinical images show that the proposed algorithm can overcome the difficulties caused by noise and bias fields, and is capable of improving over 5% segmentation accuracy comparing with several state-of-the-art algorithms.  相似文献   

5.
在传统马尔可夫场模型的基础上,建立了模糊马尔可夫场模型。通过对模型的分析得出图像像素对不同类的隶属度计算公式,提出了一种高效、无监督的图像分割算法,从而实现了对脑部MR图像的精确分割。通过对模拟脑部MR图像和临床脑部MR图像分割实验,表明新算法比传统的基于马尔可夫场的图像分割算法和模糊C-均值等图像分割算法有更精确的图像分割能力。  相似文献   

6.
核磁共振成像(MRI)作为临床辅助诊断和研究的重要工具,MR图像分割的准确性直接影响着后续处理的正确性和有效性。在目前的图像分割算法中,基于t-混合模型的图像分割方法因其快速和稳健性而受到重视。该方法的一般过程是先估计混合模型的参数,计算图像中每点的后验概率,然后根据贝叶斯最小错误率准则对图像进行分割。根据MR图像的特点,提出了基于t-混合模型的大脑MR图像白质分割的算法,并取得了较好的实验结果。  相似文献   

7.
超像素/体素分割算法把具有相同结构信息的点划分至同一子区域,获得可准确描述图像局部特征且符合功能子结构的平滑边缘信息,在医学磁共振成像(magnetic resonance imaging, MRI)分割领域广泛应用。本文比较了不同超像素算法分割脑肿瘤医学图像的性能。归纳并总结了多种最新超像素/体素算法的研究成果及应用,为进一步比较算法性能,选取了多模态脑肿瘤分割挑战赛(Multimodal Brain Tumor Segmentation Challenge, Bra TS)2018数据集中的部分脑肿瘤图像进行超像素分割。同时,通过边缘召回率、欠分割错误率、紧密度评测和可达分割准确率4项指标分析算法性能,并阐述算法的未来发展趋势和可行性空间。通过上述算法分析可得:基于图论的(graph-based)、标准化分割(normalized cut)、随机游走算法(lazy random walk)可获得精准的核心肿瘤信息,但对增强肿瘤的准确率稍显不足,不利于后续特征区域提取。基于密度的聚类算法(density-based spatial clustering of applications...  相似文献   

8.
Intensity inhomogeneity, noise and partial volume (PV) effect render a challenging task for segmentation of brain magnetic resonance (MR) images. Most of the current MR image segmentation methods focus on only one or two of the effects listed above. In this paper, a framework with modified fast fuzzy c-means for brain MR images segmentation is proposed to take all these effects into account simultaneously and improve the accuracy of image segmentations. Firstly, we propose a new automated method to determine the initial values of the centroids. Secondly, an adaptive method to incorporate the local spatial continuity is proposed to overcome the noise effectively and prevent the edge from blurring. The intensity inhomogeneity is estimated by a linear combination of a set of basis functions. Meanwhile, a regularization term is added to reduce the iteration steps and accelerate the algorithm. The weights of the regularization terms are all automatically computed to avoid the manually tuned parameter. Synthetic and real MR images are used to test the proposed framework. Improved performance of the proposed algorithm is observed where the intensity inhomogeneity, noise and PV effect are commonly encountered. The experimental results show that the proposed method has stronger anti-noise property and higher segmentation precision than other reported FCM-based techniques.  相似文献   

9.
Normal and abnormal brains can be segmented by registering the target image with an atlas. Here, an atlas is defined as the combination of an intensity image (template) and its segmented image (the atlas labels). After registering the atlas template and the target image, the atlas labels are propagated to the target image. We define this process as atlas-based segmentation. In recent years, researchers have investigated registration algorithms to match atlases to query subjects and also strategies for atlas construction. In this paper we present a review of the automated approaches for atlas-based segmentation of magnetic resonance brain images. We aim to point out the strengths and weaknesses of atlas-based methods and suggest new research directions. We use two different criteria to present the methods. First, we refer to the algorithms according to their atlas-based strategy: label propagation, multi-atlas methods, and probabilistic techniques. Subsequently, we classify the methods according to their medical target: the brain and its internal structures, tissue segmentation in healthy subjects, tissue segmentation in fetus, neonates and elderly subjects, and segmentation of damaged brains. A quantitative comparison of the results reported in the literature is also presented.  相似文献   

10.
Automation in medical industry has become one of the necessities in today’s medical scenario. Radiologists/physicians need such automation techniques for accurate diagnosis and treatment planning. Automatic segmentation of tumor portion from Magnetic Resonance (MR) brain images is a challenging task. Several methodologies have been developed with an objective to enhance the segmentation efficiency of the automated system. However, there is always scope for improvement in the segmentation process of medical image analysis. In this work, deep learning-based approach is proposed for brain tumor image segmentation. The proposed method includes the concept of Stationary Wavelet Transform (SWT) and new Growing Convolution Neural Network (GCNN). The significant objective of this work is to enhance the accuracy of the conventional system. A comparative analysis with Support Vector Machine (SVM) and Convolution Neural Network (CNN) is carried out in this work. The experimental results prove that the proposed technique has outperformed SVM and CNN in terms of accuracy, PSNR, MSE and other performance parameters.  相似文献   

11.
脑肿瘤分割是医学图像处理中的一项重要内容,其目的是辅助医生做出准确的诊断和治疗,在临床脑部医学领域具有重要的实用价值。核磁共振成像(MRI)是临床医生研究脑部组织结构的主要影像学工具,为了使更多研究者对MRI脑肿瘤图像分割理论及其发展进行探索,本文对该领域研究现状进行综述。首先总结了用于MRI脑肿瘤图像分割的方法,并对现有方法进行了分类,即分为监督分割和非监督分割;然后重点综述了基于深度学习的脑肿瘤分割方法,在研究其关键技术基础上归纳了优化策略;最后介绍了脑肿瘤分割(BraTS)挑战,并结合挑战中所用方法展望了脑肿瘤分割领域未来的发展趋势。MRI脑肿瘤图像分割领域的研究已经取得了一些显著进展,尤其是深度学习的发展为该领域的研究提供了新的思路。但由于脑肿瘤在大小、形状和位置方面的高度变化,以及脑肿瘤图像数据有限且类别不平衡等问题,使得脑肿瘤图像分割仍是一个极具挑战的课题。由于分割过程缺乏可解释性和透明性,如何将全自动分割方法应用于临床试验,还需要进行深入研究。  相似文献   

12.
This study presents a new method, namely the multi-plane segmentation approach, for segmenting and extracting textual objects from various real-life complex document images. The proposed multi-plane segmentation approach first decomposes the document image into distinct object planes to extract and separate homogeneous objects including textual regions of interest, non-text objects such as graphics and pictures, and background textures. This process consists of two stages—localized histogram multilevel thresholding and multi-plane region matching and assembling. Then a text extraction procedure is applied on the resultant planes to detect and extract textual objects with different characteristics in the respective planes. The proposed approach processes document images regionally and adaptively according to their respective local features. Hence detailed characteristics of the extracted textual objects, particularly small characters with thin strokes, as well as gradational illuminations of characters, can be well-preserved. Moreover, this way also allows background objects with uneven, gradational, and sharp variations in contrast, illumination, and texture to be handled easily and well. Experimental results on real-life complex document images demonstrate that the proposed approach is effective in extracting textual objects with various illuminations, sizes, and font styles from various types of complex document images.  相似文献   

13.
Typically, brain MR images present significant intensity variation across patients and scanners. Consequently, training a classifier on a set of images and using it subsequently for brain segmentation may yield poor results. Adaptive iterative methods usually need to be employed to account for the variations of the particular scan. These methods are complicated, difficult to implement and often involve significant computational costs. In this paper, a simple, non-iterative method is proposed for brain MR image segmentation. Two preprocessing techniques, namely intensity-inhomogeneity-correction, and more importantly MR image intensity standardization, used prior to segmentation, play a vital role in making the MR image intensities have a tissue-specific numeric meaning, which leads us to a very simple brain tissue segmentation strategy.Vectorial scale-based fuzzy connectedness and certain morphological operations are utilized first to generate the brain intracranial mask. The fuzzy membership value of each voxel within the intracranial mask for each brain tissue is then estimated. Finally, a maximum likelihood criterion with spatial constraints taken into account is utilized in classifying all voxels in the intracranial mask into different brain tissue groups. A set of inhomogeneity corrected and intensity standardized images is utilized as a training data set. We introduce two methods to estimate fuzzy membership values. In the first method, called SMG (for simple membership based on a gaussian model), the fuzzy membership value is estimated by fitting a multivariate Gaussian model to the intensity distribution of each brain tissue whose mean intensity vector and covariance matrix are estimated and fixed from the training data sets. The second method, called SMH (for simple membership based on a histogram), estimates fuzzy membership value directly via the intensity distribution of each brain tissue obtained from the training data sets. We present several studies to evaluate the performance of these two methods based on 10 clinical MR images of normal subjects and 10 clinical MR images of Multiple Sclerosis (MS) patients. A quantitative comparison indicates that both methods have overall better accuracy than the k-nearest neighbors (kNN) method, and have much better efficiency than the Finite Mixture (FM) model-based Expectation-Maximization (EM) method. Accuracy is similar for our methods and EM method for the normal subject data sets, but much better for our methods for the patient data sets.  相似文献   

14.
The morphological profile (MP) and differential morphological profile (DMP) have been used extensively to acquire spatial information to be used in the segmentation of very high resolution (VHR) remotely sensed images. In most of the previous approaches, the maxima of the MP and DMP were investigated to estimate the best representative scale in the spatial domain for the pixel under consideration. Then, the object type (i.e. dark, bright or flat) was estimated based on the location of the maximum. Finally, the image segmentation was performed using the scale and type information as features. This approach usually causes over-segmentation. In this study, we also investigate the relevance of the DMP and the meaningful object types underlying the pixel of interest, however, instead of the maxima of the DMP, the type information is estimated using the whole DMP which is weighted by a weight function. Thus, the scale is not estimated directly but used indirectly in the estimation of the characteristic type for the object to which the pixel belongs. Then, the pixels are clustered based on their types only. The method has been applied to panchromatic high resolution QuickBird satellite images of the city of Ankara, Turkey. The results of the method were compared with previous studies and the proposed method seems to segment the images more precisely and semantically than the previous approaches.  相似文献   

15.
医学影像是产前筛查、诊断、治疗引导和评估的重要工具,能有效避免胎儿脑的发育异常。近年来,磁共振成像在产前诊断中愈加重要,而实现自动、定量、精确地分析胎儿脑磁共振图像依赖于可靠的图像分割。因此,胎儿脑磁共振图像分割具有十分重要的临床意义与研究价值。由于胎儿图像中存在组织器官多、图像质量差及结构变化快等问题,胎儿脑磁共振图像的分割面临着巨大的困难与挑战。目前,尚未有文献对该领域的方法进行系统性的总结和分析,尤其是基于深度学习的方法。本文针对胎儿脑磁共振图像分割方法进行综述,首先,对胎儿脑磁共振图像的主要公开图谱/数据集进行详细说明;接着,对脑实质提取、组织分割和病灶分割方法进行全面的分类与分析;最后,对胎儿脑磁共振图像分割面临的挑战及未来的研究方向进行总结与展望。  相似文献   

16.
A methodology for automatic identification and segmentation of white matter hyper-intensities appearing in magnetic resonance images of brain axial cuts is presented. To this end, a sequence of image processing technics is employed to form an image where the hyper-intensities in white matter differ notoriously from the rest of the objects. This pre-processing stage facilitates the posterior process of identification and segmentation of the hyper-intensity volumes. The proposed methodology was tested on 55 magnetic resonance images from six patients. These images were analysed by the proposed system and the resulted hyper-intensity images were compared with the images manually segmented by experts. The experimental results show the mean rate of true positives of 0.9, the mean rate of false positives of 0.7 and the similarity index of 0.7; it is worth commenting that the false positives are found mostly within the grey matter not causing problems in early diagnosis. The proposed methodology for magnetic resonance image processing and analysis may be useful in the early detection of white matter lesions.  相似文献   

17.
This study presents an image segmentation system that automatically segments and labels T1-weighted brain magnetic resonance (MR) images. The method is based on a combination of unsupervised learning algorithm of the self-organizing maps (SOM) and supervised learning vector quantization (LVQ) methods. Stationary wavelet transform (SWT) is applied to the images to obtain multiresolution information for distinguishing different tissues. Statistical information of the different tissues is extracted by applying spatial filtering to the coefficients of SWT. A multidimensional feature vector is formed by combining SWT coefficients and their statistical features. This feature vector is used as input to the SOM. SOM is used to segment images in a competitive unsupervised approach and an LVQ system is used for fine-tuning. Results are evaluated using Tanimoto similarity index and are compared with manually segmented images. Quantitative comparisons of our system with the other methods on real brain MR images using Tanimoto similarity index demonstrate that our system shows better segmentation performance for the gray matter while it gives average results for white matter.  相似文献   

18.
磁共振成像(MRI)作为一种典型的非侵入式成像技术,可产生高质量的无损伤和无颅骨伪影的脑影像,为脑肿瘤的诊断和治疗提供更为全面的信息,是脑肿瘤诊疗的主要技术手段。MRI脑肿瘤自动分割利用计算机技术从多模态脑影像中自动将肿瘤区(坏死区、水肿区、非增强肿瘤区和增强肿瘤区)和正常组织区进行分割和标注,对于辅助脑肿瘤的诊疗具有重要作用。本文对MRI脑肿瘤图像分割的深度学习方法进行了总结与分析,给出了各类方法的基本思想、网络架构形式、代表性改进方案以及优缺点总结等,并给出了部分典型方法在BraTS(multimodal brain tumor segmentation)数据集上的性能表现与分析结果。通过对该领域研究方法进行综述,对现有基于深度学习的MRI脑肿瘤分割研究方法进行了梳理,作为新的发展方向,MRI脑肿瘤图像分割的深度学习方法较传统方法已取得明显的性能提升,已成为领域主流方法并持续展现出良好的发展前景,有助于进一步推动MRI脑肿瘤分割在临床诊疗上的应用。  相似文献   

19.
目的 评估肿瘤的恶性程度是临床诊断中的一项具有挑战性的任务。因脑肿瘤的磁共振成像呈现出不同的形状和大小,肿瘤的边缘模糊不清,导致肿瘤分割具有挑战性。为有效辅助临床医生进行肿瘤评估和诊断,提高脑肿瘤分割精度,提出一种自适应模态融合双编码器分割网络D3D-Net(double3DNet)。方法 本文提出的网络使用多个编码器和特定的特征融合的策略,采用双层编码器用于充分提取不同模态组合的图像特征,并在编码部分利用特定的融合策略将来自上下两个子编码器的特征信息充分融合,去除冗余特征。此外,在编码解码部分使用扩张多纤维模块在不增加计算开销的前提下捕获多尺度的图像特征,并引入注意力门控以保留细节信息。结果 采用BraTS2018(brain tumor segmentation 2018)、BraTS2019和BraTS2020数据集对D3D-Net网络进行训练和测试,并进行了消融实验。在BraTS2018数据集上,本模型在增强肿瘤、整个肿瘤、肿瘤核心的平均Dice值与3D U-Net相比分别提高了3.6%,1.0%,11.5%,与DMF-Net(dilatedmulti-fibernetwork...  相似文献   

20.
改进的遗传模糊聚类算法对医学图像的分割   总被引:1,自引:0,他引:1  
利用遗传算法全局随机搜索的特点,可以解决模糊C均值聚类(FCM)算法在医学图像分割中容易陷入局部最优解的问题,但确定遗传算法的初始搜索范围时,需要借助于人的经验。为此,用收敛速度快的硬聚类算法得到的聚类中心作为参考,上下浮动划出一个较小的数据范围,作为遗传算法的初始搜索空间。该方法在避免FCM算法陷入局部最优化的同时,也加速了遗传算法的收敛过程。实验表明,该方法相对于标准的遗传模糊算法,效果要好得多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号