首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A computational paradigm for multiresolution topology optimization (MTOP)   总被引:2,自引:2,他引:0  
This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the analysis, the design variable mesh to perform the optimization, and the density mesh (or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.  相似文献   

2.
3.
The purpose of this article is to benchmark different optimization solvers when applied to various finite element based structural topology optimization problems. An extensive and representative library of minimum compliance, minimum volume, and mechanism design problem instances for different sizes is developed for this benchmarking. The problems are based on a material interpolation scheme combined with a density filter. Different optimization solvers including Optimality Criteria (OC), the Method of Moving Asymptotes (MMA) and its globally convergent version GCMMA, the interior point solvers in IPOPT and FMINCON, and the sequential quadratic programming method in SNOPT, are benchmarked on the library using performance profiles. Whenever possible the methods are applied to both the nested and the Simultaneous Analysis and Design (SAND) formulations of the problem. The performance profiles conclude that general solvers are as efficient and reliable as classical structural topology optimization solvers. Moreover, the use of the exact Hessians in SAND formulations, generally produce designs with better objective function values. However, with the benchmarked implementations solving SAND formulations consumes more computational time than solving the corresponding nested formulations.  相似文献   

4.
We propose a new numerical tool for structural optimization design. To cut down the computational burden typical of the Solid Isotropic Material with Penalization (SIMP) method, we apply Proper Orthogonal Decomposition on SIMP snapshots computed on a fixed grid to construct a rough structure (predictor) which becomes the input of a SIMP procedure performed on an anisotropic adapted mesh (corrector). The benefit of the proposed design tool is to deliver smooth and sharp layouts which require a contained computational effort before moving to the 3D printing production phase.  相似文献   

5.
6.
Honeycomb Wachspress finite elements for structural topology optimization   总被引:4,自引:4,他引:0  
Traditionally, standard Lagrangian-type finite elements, such as linear quads and triangles, have been the elements of choice in the field of topology optimization. However, finite element meshes with these conventional elements exhibit the well-known “checkerboard” pathology in the iterative solution of topology optimization problems. A feasible alternative to eliminate such long-standing problem consists of using hexagonal (honeycomb) elements with Wachspress-type shape functions. The features of the hexagonal mesh include two-node connections (i.e. two elements are either not connected or connected by two nodes), and three edge-based symmetry lines per element. In contrast, quads can display one-node connections, which can lead to checkerboard; and only have two edge-based symmetry lines. In addition, Wachspress rational shape functions satisfy the partition of unity condition and lead to conforming finite element approximations. We explore the Wachspress-type hexagonal elements and present their implementation using three approaches for topology optimization: element-based, continuous approximation of material distribution, and minimum length-scale through projection functions. Examples are presented that demonstrate the advantages of the proposed element in achieving checkerboard-free solutions and avoiding spurious fine-scale patterns from the design optimization process.  相似文献   

7.
This paper proposes an evolutionary accelerated computational level set algorithm for structure topology optimization. It integrates the merits of evolutionary structure optimization (ESO) and level set method (LSM). Traditional LSM algorithm is largely dependent on the initial guess topology. The proposed method combines the merits of ESO techniques with those of LSM algorithm, while allowing new holes to be automatically generated in low strain energy within the nodal neighboring region during optimization. The validity and robustness of the new algorithm are supported by some widely used benchmark examples in topology optimization. Numerical computations show that optimization convergence is accelerated effectively.  相似文献   

8.
《Computers & Structures》2006,84(3-4):127-140
This paper presents a novel methodology, fuzzy tolerance multilevel programming approach, for applying fuzzy set theory and sequence multilevel method to multi-objective topology optimization problems of continuum structures undergoing multiple loading cases. Ridge-type nonlinear membership functions in fuzzy set theory are applied to embody fuzzy and uncertain characteristics essentially involved by the objective and constraint functions. Sequence multilevel method is used to characterize the different priorities of loading cases at different levels making contribution to the final optimum solution, which is practically beneficial to reduce the subjective influence transferred by using weighted approaches. The solid isotropic material with penalization (SIMP) is adopted as the density-stiffness interpolation scheme to relax the original optimization problem and indicate the dependence of material properties with element pseudo-densities. Sequential linear programming (SLP) is used as the optimizer to solve the multi-objective optimization problem formulated using fuzzy tolerance multilevel programming scheme. Numerical instabilities, such as checkerboards and mesh dependencies are summarized and a duplicate sensitivity filtering method, in favor of contributing to the mesh-dependent optimum designs, is subsequently proposed to regularize the singularity of the optimization problem. The validation of the methodologies presented in this work has been demonstrated by detailed examples of numerical applications.  相似文献   

9.
This paper presents a general formulation of structural topology optimization for maximizing structure stiffness with mixed boundary conditions, i.e. with both external forces and prescribed non-zero displacement. In such formulation, the objective function is equal to work done by the given external forces minus work done by the reaction forces on prescribed non-zero displacement. When only one type of boundary condition is specified, it degenerates to the formulation of minimum structural compliance design (with external force) and maximum structural strain energy design (with prescribed non-zero displacement). However, regardless of boundary condition types, the sensitivity of such objective function with respect to artificial element density is always proportional to the negative of average strain energy density. We show that this formulation provides optimum design for both discrete and continuum structures.  相似文献   

10.
Structural and Multidisciplinary Optimization - One challenge of solving topology optimization problems under harmonic excitation is that usually a large number of displacement and adjoint...  相似文献   

11.
This article presents a Sequential Quadratic Programming (SQP) solver for structural topology optimization problems named TopSQP. The implementation is based on the general SQP method proposed in Morales et al. J Numer Anal 32(2):553–579 (2010) called SQP+. The topology optimization problem is modelled using a density approach and thus, is classified as a nonconvex problem. More specifically, the SQP method is designed for the classical minimum compliance problem with a constraint on the volume of the structure. The sub-problems are defined using second-order information. They are reformulated using the specific mathematical properties of the problem to significantly improve the efficiency of the solver. The performance of the TopSQP solver is compared to the special-purpose structural optimization method, the Globally Convergent Method of Moving Asymptotes (GCMMA) and the two general nonlinear solvers IPOPT and SNOPT. Numerical experiments on a large set of benchmark problems show good performance of TopSQP in terms of number of function evaluations. In addition, the use of second-order information helps to decrease the objective function value.  相似文献   

12.
Level-set methods for structural topology optimization: a review   总被引:1,自引:0,他引:1  
This review paper provides an overview of different level-set methods for structural topology optimization. Level-set methods can be categorized with respect to the level-set-function parameterization, the geometry mapping, the physical/mechanical model, the information and the procedure to update the design and the applied regularization. Different approaches for each of these interlinked components are outlined and compared. Based on this categorization, the convergence behavior of the optimization process is discussed, as well as control over the slope and smoothness of the level-set function, hole nucleation and the relation of level-set methods to other topology optimization methods. The importance of numerical consistency for understanding and studying the behavior of proposed methods is highlighted. This review concludes with recommendations for future research.  相似文献   

13.
In this paper, we introduce a semi-Lagrange scheme to solve the level-set equation in structural topology optimization. The level-set formulation of the problem expresses the optimization process as a solution to a Hamilton–Jacobi partial differential equation. It allows for the use of shape sensitivity to derive a speed function for a descent solution. However, numerical stability condition in the explicit upwind scheme for discrete level-set equation severely restricts the time step, requiring a large number of time steps for a numerical solution. To improve the numerical efficiency, we propose to employ a semi-Lagrange scheme to solve level-set equation. Therefore, a much larger time step can be obtained and a much smaller number of time steps are required. Numerical experiments comparing the semi-Lagrange method with the classical explicit upwind scheme are presented for the problem of mean compliance optimization in two dimensions.  相似文献   

14.
15.
Shape feature control in structural topology optimization   总被引:1,自引:0,他引:1  
A variational approach to shape feature control in topology optimization is presented in this paper. The method is based on a new class of surface energies known as higher-order energies as opposed to the conventional energies for problem regularization, which are linear. In employing a quadratic energy functional in the objective of the topology optimization, non-trivial interactions between different points on the structural boundary are introduced, thus favoring a family of shapes with strip-like (or beam) features. In addition, the quadratic energy functional can be seamlessly integrated into the level set framework that represents the geometry of the structure implicitly. The shape gradient of the quadratic energy functional is fully derived in the paper, and it is incorporated in the level set approach for topology optimization. The approach is demonstrated with benchmark examples of structure optimization and compliant mechanism design. The results presented show that this method is capable of generating strip-like (or beam) designs with specified feature width, which have highly desirable characteristics and practical benefits and uniquely distinguish the proposed method.  相似文献   

16.
Structural and Multidisciplinary Optimization - This paper presents a multi-component topology optimization method for the structural assemblies that are made of components produced by die casting...  相似文献   

17.
18.
19.
Structural and Multidisciplinary Optimization - Traditional building design is often done in a (pseudo-) sequential manner: the architect defines the form, the structural engineer defines the...  相似文献   

20.
This brief note introduces two fundamental theorems, by means of which already known exact optimal structural topologies can be extended to numerous new boundary conditions. Illustrative examples are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号