首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Xu S  Cao Y  Zhou J  Wang X  Wang X  Xu W 《Nanotechnology》2011,22(27):275715
The localized plasmon controlled fluorescence has been discussed by comparing the fluorescence enhancement of dyes on different shaped silver nanoparticle self-assembled films. A trilayer structure, composed of a silver nanoparticle monolayer, a proper thickness polyelectrolyte spacing layer and a dye-adsorbed layer, was constructed to study the plasmon enhanced fluorescence properties. The effective coupling of the plasmon band with the excitation or emission of dye resulted in different enhancement factors. Moreover, the plasmon enhanced fluorescence resonance energy transfer (FRET) of two dyes was observed. The FRET efficiency of the spherical silver nanoparticle self-assembled film had a 2.8-fold increase. The improvement of FRET efficiency via localized surface plasmons would increase the sensitivity of FRET-based bioassays.  相似文献   

2.
Spontaneous emission of fluorescent molecules or quantum dots is radiated along all directions when emitters are diluted in a liquid solution, which severely limits the amount of collected light. Besides, the emission direction does not carry any useful information and cannot be used to sort different molecules. To go beyond these limits, optical antennas have been recently introduced as conceptual tools to control the radiation properties for nanoemitters fixed on a substrate. Despite intense recent research, controlling the luminescence directivity remains a challenge for emitters with random positions and orientations, which is a key for several biomolecular screening applications. Here, we present full directional control of the fluorescence emission from molecules in water solution by an optical antenna made of a nanoaperture surrounded by a periodic set of shallow grooves in a gold film. For each emission wavelength, the fluorescence beam can be directed along a specific direction with a given angular width, hereby realizing a micrometer-size dispersive antenna. We demonstrate the fluorescence beaming results from an interference phenomenon and provide physical optics guidelines to control the fluorescence directivity by tuning the groove-nanoaperture distance. This photon-sorting capability provides a new approach for high-sensitivity screening of molecular species in solution.  相似文献   

3.
Recent advances in optical imaging systems and systemically administered fluorescent probes have significantly improved the ways by which we can visualize proteomics in vivo. A key component in the design of fluorescent probes is a favorable biodistribution, i.e., localization only in the targeted diseased tissue, in order to achieve high contrast and good detection characteristics. In practice, however, there is always some level of background fluorescence present that could result in distorted or obscured visualization and quantification of measured signals. In this study we observe the effects of background fluorescence in tomographic imaging. We demonstrate that increasing levels of background fluorescence result in artifacts when using a linear perturbation algorithm, along with a significant loss of image fidelity and quantification accuracy. To correct for effects of background fluorescence, we have applied cubic polynomial fits to bulk raw measurements obtained from spatially homogeneous and heterogeneous phantoms. We show that subtraction of the average fluorescence response from the raw data before reconstruction can improve image quality and quantification accuracy as shown in relatively homogeneous or heterogeneous phantoms. Subtraction methods thus appear to be a promising route for adaptively correcting nonspecific background fluorochrome distribution.  相似文献   

4.
Ooi KJ  Bai P  Gu MX  Ang LK 《Nanotechnology》2012,23(27):275201
A plasmonic coupled-cavity system, which consists of a quarter-wave coupler cavity, a resonant Fabry-Pérot detector nanocavity, and an off-resonant reflector cavity, is used to enhance the localization of surface plasmons in a plasmonic detector. The coupler cavity is designed based on transmission line theory and wavelength scaling rules in the optical regime, while the reflector cavity is derived from off-resonant resonator structures to attenuate transmission of plasmonic waves. We observed strong coupling of the cavities in simulation results, with an 86% improvement of surface plasmon localization achieved. The plasmonic coupled-cavity system may find useful applications in areas of nanoscale photodetectors, sensors, and an assortment of plasmonic-circuit devices.  相似文献   

5.
合成了新的发光分子-4-N,N-二苯基氛基苯甲酸琉角酸亚胺(简称TBA-SCM ),利用其琉拍跳亚胺基与PAMAM所含的氛基之间高度反应活性,将三苯胺甲统基组装键合在树枝分子PAMAM (0~3G)表面,构筑新的树枝分子TBA-PAMAM.研究表明,在稀溶液(10-6)下未观测到TBA-PAMAM的荧光增强现象;当浓度...  相似文献   

6.
7.
The average plasmonic enhancement of Au nanoshell (Au-NS) coated by a molecules-doped silica layer (Au-NS@SiO2) on molecular fluorescence is studied theoretically to estimate the overall performance of a large number of Au-NS@SiO2. Using Mie theory and dyadic Green's functions, analytical solutions of the excitation rate and the apparent quantum yield are obtained to calculate the enhancement factor of Au-NS@SiO2 on the fluorescence of a molecule with a specific orientation and location at a specific excitation wavelength lambda ex and an emission wavelength lambda em. Subsequently, the average enhancement factor (AEF) is calculated by averaging all possible orientations and locations of the molecule. For example, AEF of Au-NS@SiO2 (a3 = 50 nm t2 = 15 nm, t1 = 25 nm) is 4.544 for a NIR fluorescence at lambda ex = 780 nm and lambda em = 820 nm. Our results show that Au-NS is a broadband enhancer for NIR fluorescence; the bandwidth and the peak depend on the core size and the thickness of Au shell.  相似文献   

8.
As one of the most commonly used solvents, ethanol exhibits weak fluorescence when excited by ultraviolet (UV) light. Until now, the fluorescence of ethanol-doped nanoparticles has not been studied. In this paper, eleven different concentrations of SiO2 nanoparticles (diameter 100 nm) were doped in ethanol, and corresponding colloids were formed. The excitation and emission spectra of the colloids were measured. The experimental results indicated that the SiO2 nanoparticles obviously enhanced the fluorescence of ethanol. Under excitation at 306 nm, the enhancement effect is the best when the concentration of SiO2 nanoparticles is 4.452 x 10(12) ml(-1), and the enhancement factor is nearly 50 times at the peak position of 360 nm. At the excitation wavelength of 360 nm, the enhancement effect is the best when the concentration of SiO2 nanoparticles is 1.113 x 10(13) ml(-1), and the enhancement factor is nearly 40 times at the peak position of 397 nm. The result of this article will reduce the test limit of ethanol by two magnitudes.  相似文献   

9.
To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.  相似文献   

10.
Fluorescence enhancement achieved by functionalized microstructures made by two-photon polymerization (TPP) is reported for the first time. Microstructures of various shapes made of SU-8 photoresist were prepared and coated with gold nanoparticles (NP) of 80 nm. Localized fluorescence enhancement was demonstrated by microstructures equipped with tips of sub-micron dimensions. The enhancement was realized by positioning the NP-coated structures over fluorescent protein layers. Two fluorophores with their absorption in the red and in the green region of the VIS spectrum were used. Laser scanning confocal microscopy was used to quantify the enhancement. The enhancement factor was as high as 6 in areas of several square-micrometers and more than 3 in the case of local enhancement, comparable with literature values for similar nanoparticles. The structured pattern of the observed fluorescence intensity indicates a classic enhancement mechanism realized by standing waves over reflecting surfaces. With further development mobile microtools made by TPP and functionalized by metal NPs can be actuated by optical tweezers and position to any fluorescent micro-object, such as single cells to realize localized, targeted fluorescence enhancement.  相似文献   

11.
We report on the nanofabrication of patterned silver particle arrays using electron-beam lithography and the evaluation of their optical properties using backscattering and fluorescence spectroscopy. The silver particles varied in size from 100 to 250 nm and were in the shape of circles, squares, and triangles. Three inter-particle separations, 40, 65, and 90 nm as measured from the side of one particle to the side of the next particle, were used. We observed distinctive patterns of backscattering and fluorescence intensity depending on the particle size, inter-particle spacing, and excitation/emission wavelength used. Our approach allows for a study of the correlation between the backscattering intensities and fluorescence enhancement of silver particle arrays, which can be used to optimize the arrays for multi-fluorophore configuration for advanced sensing designs.  相似文献   

12.
Based on a previous research of cavitation effect under bi-frequency ultrasound irradiation, this paper studies bi-frequency irradiations with similar experimental settings. The additional irradiation sources with frequencies of 1.04MHz, 0.8MHz and 1.7MHz are individually combined with the main ultrasonic irradiation source with frequency of 28kHz to form bi-frequency ultrasonic irradiation. The intensity of 28kHz irradiation was fixed at 12.5W/cm2, while the intensity of the ultrasound at the other three frequencies is varied from1 W/cm2 to 18 W/cm2. It turns out that under the influence of the bi-frequency irradiation, the fluorescence intensity is obviously greater than the sum of those at individual frequencies. So the frequency of the additional sonication strikingly influences the fluorescence enhancement effect. For example, the fluorescence enhancement effect of 1.04MHz is stronger than that of 1.7MHz, and the enhancement effect of 0.8MHz is further stronger than that of 1.04MHz. Under the sonic intensity of 7.9W/cm2, the fluorescence intensity of 1.04MHz is approximately twice that of 1.7MHz while the fluorescence intensity of 0.8MHz is approximately 1.5 times that of 1.04MHz.  相似文献   

13.
We provide an overview of the way in which different approaches to nanostructuring metals can lead to a wealth of interesting optical properties and functionality through manipulation of the plasmon modes that such structures support, a field known as plasmonics. The increasing interest in plasmonics derives in large measure from the interplay between better fabrication techniques and an awareness of the potential that controlled plasmon modes have to offer. The combination of nanometer‐scale fabrication techniques and increasingly sophisticated numerical modeling capabilities thus enables a significant advance in our understanding of the science underlying plasmonics. Here, we survey some of the different structures that have been explored. We hope that this Review will spur others to continue the exploration of this fascinating topic.  相似文献   

14.
Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based detection techniques. Metal induced fluorescence enhancement offers the possibility of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ~2 orders of magnitude is obtained by the nanoscale control of the Ag nanostructure dimensions and interparticle distance. These Ag nanostructures also enhanced fluorescence from a dye with very high quantum yield (7.8 fold for Alexa Fluor 488, quantum efficiency (Qy) = 0.92). A combination of greatly enhanced excitation and an increased radiative decay rate, leading to an associated enhancement of the quantum efficiency leads to the large enhancement. These results show the potential of Ag nanostructures as metal induced fluorescence enhancement (MIFE) substrates for dyes in the NIR “biological window” as well as the visible region. Ag nanostructured arrays fabricated by colloidal lithography thus show great potential for NIR dye-based biosensing applications.   相似文献   

15.
Image contrast enhancement is investigated for two-photon excitation fluorescence images of a microscopic sample that is buried underneath a turbid medium. The image contrast, which deteriorates rapidly with sample depth because of scattering loss, is enhanced by an increase in the average excitation power of the focused Gaussian (the TEM(00) mode) beam according to a compensation relation that has been derived by use of a Monte Carlo analysis of the scattering problem. A correct increase in the excitation power results in a detected fluorescence signal that remains invariant with sample depth. The scheme is demonstrated on images of DAPI-stained nuclei cells viewed underneath a suspension of 0.105-mum-diameter polystyrene spheres.  相似文献   

16.
17.
Tan Y  Jiang H 《Applied optics》2008,47(12):2011-2016
We describe a method that combines fluorescence molecular tomography (FMT) with diffuse optical tomography (DOT), which allows us to study the impact of heterogeneous optical property distribution on FMT, an issue that has not been systemically studied. Both numerical simulations and phantom experiments were performed based on our finite-element reconstruction algorithms. The experiments were conducted using a noncontact optical fiber free, multiangle transmission system. In both the simulations and experiments, a fluorescent target was embedded in an optically heterogeneous background medium. The simulation results clearly suggest the necessity of considering the absorption coefficient (mu(a)) and reduced scattering coefficient (mu'(s)) distributions for quantitatively accurate FMT, especially in terms of the accuracy of reconstructed fluorophore absorption coefficient (mu(a(x-->m))). Subsequent phantom experiments with an indocyanine green (ICG)-containing target confirm the simulation findings. In addition, we performed a series of phantom experiments with low ICG concentration (0.1, 0.2, 0.4, 0.6 and 1.0 microM) in the target to systematically evaluate the quantitative accuracy of our FMT approach. The results indicate that, with the knowledge of optical property distribution, the accuracy of the recovered fluorophore concentration is improved significantly over that without such a priori information. In particular absolute value of mu(a(x-->m) ) from our DOT guided FMT are quantitatively consistent with that obtained using spectroscopic methods.  相似文献   

18.
Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping. Lithography in the near field using the surface plasmon polariton (i.e., plasmonic lithography) provides a promising solution. The system with high stiffness passive nanogap control strategy on a high-speed rotating substrate is one of the most attractive high-throughput methods. However, a smaller and steadier plasmonic nanogap, new scheme of plasmonic lens, and parallel processing should be explored to achieve a new generation high resolution and reliable efficient nanofabrication. Herein, a parallel plasmonic direct-writing nanolithography system is established in which a novel plasmonic flying head is systematically designed to achieve around 15 nm minimum flying-height with high parallelism at the rotating speed of 8–18 m·s−1. A multi-stage metasurface-based polarization insensitive plasmonic lens is proposed to couple more power and realize a more confined spot compared with conventional plasmonic lenses. Parallel lithography of the nanostructures with the smallest (around 26 nm) linewidth is obtained with the prototyping system. The proposed system holds great potential for high-freedom nanofabrication with low cost, such as planar optical elements and nano-electromechanical systems.  相似文献   

19.
We review different routes for the generation of nanoporous metallic foams and films exhibiting well‐defined pore size and short‐range order. Dealloying and templating allows the generation of both 2D and 3D structures that promise a plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in‐depth investigations of the plasmonic and photonic properties of this material system for photonic applications.  相似文献   

20.
The fundamental optical properties of pure nickel nanostructures are studied by far‐field extinction spectroscopy and optical near‐field microscopy, providing direct experimental evidence of the existence of particle plasmon resonances predicted by theory. Experimental and calculated near‐field maps allow for unambiguous identification of dipolar plasmon modes. By comparing calculated near‐field and far‐field spectra, dramatic shifts are found between the near‐field and far‐field plasmon resonances, which are much stronger than in gold nanoantennas. Based on a simple damped harmonic oscillator model to describe plasmonic resonances, it is possible to explain these shifts as due to plasmon damping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号