首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field-scale acetate amendment experiment was performed in a contaminated aquifer at Old Rifle, CO to stimulate in situ microbial reduction of U(VI) in groundwater. To evaluate the microorganisms responsible for microbial uranium reduction during the experiment, 13C-labeled acetate was introduced into well bores via bio-traps containing porous activated carbon beads (Bio-Sep). Incorporation of the 13C from labeled acetate into cellular DNA and phospholipid fatty acid (PLFA) biomarkers was analyzed in parallel with geochemical parameters. An enrichment of active sigma-proteobacteria was demonstrated in downgradient monitoring wells: Geobacter dominated in wells closer to the acetate injection gallery, while various sulfate reducers were prominent in different downgradient wells. These results were consistent with the geochemical evidence of Fe(III), U(VI), and SO(4)2- reduction. PLFA profiling of bio-traps suspended in the monitoring wells also showed the incorporation of 13C into bacterial cellular lipids. Community composition of downgradient monitoring wells based on quinone and PLFA profiling was in general agreement with the 13C-DNA result. The direct application of 13C label to biosystems, coupled with DNA and PLFA analysis,  相似文献   

2.
Here we provide evidence of the capability of stable lead isotopes to trace landfill leachate in a shallow groundwater. The municipal landfill we have investigated is located in southeastern France. It has no bottom liner, and wastes are placed directly on the ground. Stable lead isotopes allow the characterization of this landfill leachate signature (206Pb/207Pb = 1.189 +/- 0.004) that is clearly different from that of the local atmosphere (206Pb/207Pb = 1.150 +/- 0.006) and crustal lead (206Pb/207Pb = 1.200 +/- 0.005). Piezometers located in the direct vicinity of the landfill generally display this contaminant imprint. The landfill plume is monitored up to 1000 m downgradient of the landfill, in very good agreement with evaluation from chloride concentration. Meanwhile, 206Pb/207Pb ratios measured at a piezometer located 4600 m downgradient of the landfill suggest a contamination by the landfill plume. This result shows that the complexity of a pollutant plume dispersion in this shallow groundwater system requires several independent tracers to clearly resolve origin and transport pathways for contaminants. Furthermore, seasonal rainfall variation for this Mediterranean mixed Quaternary alluvion reservoir and the use of KCl fertilizers might favor an efficient remobilization of atmospheric lead in plowed soils and its transfer into groundwater as shown by lead isotope systematics.  相似文献   

3.
Managers of landfill sites are faced with enormous challenges when attempting to detect and delineate leachate plumes with a limited number of monitoring wells, assess spatial and temporal trends for hundreds of contaminants, and design long-term monitoring (LTM) strategies. Subsurface microbial ecology is a unique source of data that has been historically underutilized in LTM groundwater designs. This paper provides a methodology for utilizing qualitative and quantitative information (specifically, multiple water quality measurements and genome-based data) from a landfill leachate contaminated aquifer in Banisveld, The Netherlands, to improve the estimation of parameters of concern. We used a principal component analysis (PCA) to reduce nonindependent hydrochemistry data, Bacteria and Archaea community profiles from 16S rDNA denaturing gradient gel electrophoresis (DGGE), into six statistically independent variables, representing the majority of the original dataset variances. The PCA scores grouped samples based on the degree or class of contamination and were similar over considerable horizontal distances. Incorporation of the principal component scores with traditional subsurface information using cokriging improved the understanding of the contaminated area by reducing error variances and increasing detection efficiency. Combining these multiple types of data (e.g., genome-based information, hydrochemistry, borings) may be extremely useful at landfill or other LTM sites for designing cost-effective strategies to detect and monitor contaminants.  相似文献   

4.
Field and laboratory techniques were used to identify the biogeochemical factors affecting sulfate reduction in a shallow, unconsolidated alluvial aquifer contaminated with landfill leachate. Depth profiles of 35S-sulfate reduction rates in aquifer sediments were positively correlated with the concentration of dissolved sulfate. Manipulation of the sulfate concentration in samples revealed a Michaelis-Menten-like relationship with an apparent Km and Vmax of approximately 80 and 0.83 microM SO4(-2) x day(-1), respectively. The concentration of sulfate in the core of the leachate plume was well below 20 microM and coincided with very low reduction rates. Thus, the concentration and availability of this anion could limit in situ sulfate-reducing activity. Three sulfate sources were identified, including iron sulfide oxidation, barite dissolution, and advective flux of sulfate. The relative importance of these sources varied with depth in the alluvium. The relatively high concentration of dissolved sulfate at the water table is attributed to the microbial oxidation of iron sulfides in response to fluctuations of the water table. At intermediate depths, barite dissolves in undersaturated pore water containing relatively high concentrations of dissolved barium (approximately 100 microM) and low concentrations of sulfate. Dissolution is consistent with the surface texture of detrital barite grains in contact with leachate. Laboratory incubations of unamended and barite-amended aquifer slurries supported the field observation of increasing concentrations of barium in solution when sulfate reached low levels. At a deeper highly permeable interval just above the confining bottom layer of the aquifer, sulfate reduction rates were markedly higher than rates at intermediate depths. Sulfate is supplied to this deeper zone by advection of uncontaminated groundwater beneath the landfill. The measured rates of sulfate reduction in the aquifer also correlated with the abundance of accumulated iron sulfide in this zone. This suggests that the current and past distributions of sulfate-reducing activity are similar and that the supply of sulfate has been sustained at these sites.  相似文献   

5.
The alluvial aquifer adjacent to Norman Landfill, OK, provides an excellent natural laboratory for the study of anaerobic processes impacting landfill-leachate contaminated aquifers. We collected groundwaters from a transect of seven multilevel wells ranging in depth from 1.3 to 11 m that were oriented parallel to the flow path. The center of the leachate plume was characterized by (1) high alkalinity and elevated concentrations of total dissolved organic carbon, reduced iron, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (delta13C) values suggest anaerobic methane oxidation was occurring within the plume and at its margins. Methane delta13C values increased from about -54 per thousand near the source to > -10 per thousand downgradient and at the plume margins. The isotopic fractionation associated with this methane oxidation was -13.6+/-1.0 per thousand. Methane 13C enrichment indicated that 80-90% of the original landfill methane was oxidized over the 210-m transect. First-order rate constants ranged from 0.06 to 0.23 per year, and oxidation rates ranged from 18 to 230 microM/y. Overall, hydrochemical data suggest that a sulfate reducer-methanogen consortium may mediate this methane oxidation. These results demonstrate that natural attenuation through anaerobic methane oxidation can be an important sink for landfill methane in aquifer systems.  相似文献   

6.
Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City, NC. The PRB was installed in 1996 to treat groundwater contaminated with hexavalent chromium. After eight years of operation, the PRB remains effective at reducing concentrations of Cr from average values >1500 microg L(-1) in groundwater hydraulically upgradient of the PRB to values <1 microg L(-1) in groundwater within and hydraulically downgradient of the PRB. Chromium removal from groundwater occurs at the leading edge of the PRB and also within the aquifer immediately upgradient of the PRB. These regions also witness the greatest amount of secondary mineral formation due to steep geochemical gradients that result from the corrosion of zerovalent iron. X-ray absorption near-edge structure (XANES) spectroscopy indicated that chromium is predominantly in the trivalent oxidation state, confirming that reductive processes are responsible for Cr sequestration. XANES spectra and microscopy results suggest that Cr is, in part, associated with iron sulfide grains formed as a consequence of microbially mediated sulfate reduction in and around the PRB. Results of this study provide evidence that secondary iron-bearing mineral products may enhance the capacity of zerovalent iron systems to remediate Cr in groundwater, either through redox reactions at the mineral-water interface or by the release of Fe(II) to solution via mineral dissolution and/or metal corrosion.  相似文献   

7.
Effects upon microbial communities from environmental exposure to concentrations of antibiotics in the μg L(-1) range remain poorly understood. Microbial communities from an oligotrophic aquifer (estimated doubling rates of only once per week) that were previously acclimated (AC) or unacclimated (UAC) to historical sulfamethoxazole (SMX) contamination, and a laboratory-grown Pseudomonas stutzeri strain, were exposed to 240-520 μg L(-1) SMX for 30 days in situ using filter chambers allowing exposure to ambient groundwater, but not to ambient microorganisms. SMX-exposed UAC bacterial communities displayed the greatest mortality and impairment (viable stain assays), the greatest change in sensitivity to SMX (dose-response assays), and the greatest change in community composition (Terminal Restriction Fragment Length Polymorphism; T-RFLP). The sul1 gene, encoding resistance to SMX at clinically relevant levels, and an element of Class I integrons, was not detected in any community. Changes in microbial community structure and SMX resistance over a short experimental period in previously nonexposed, slow-growing aquifer communities suggest concentrations of antibiotics 2-3 orders of magnitude less than those used in clinical applications may influence ecological function through changes in community composition, and could promote antibiotic resistance through selection of naturally resistant bacteria.  相似文献   

8.
Data obtained from a field study of an aquifer contaminated by landfill leachate and related laboratory experiments suggest that natural attenuation of phenoxy acid herbicides such as mecoprop (MCPP) occurs in the transition zone between the anaerobic plume core and the overlying aerobic water body. The location of this transition zone is assumed to be primarily controlled by vertical transverse dispersion processes occurring downstream of the pollution source. A reactive transport modeling study was carried out to evaluate this conceptual model. The transport was simulated for a two-dimensional vertical cross section to quantify the combined physical, geochemical, and microbial processes that affect the fate of the phenoxy acid herbicides. The simulations, showing removal of phenoxy acids, an increase of phenoxy acid degraders in the fringe zone, and a dependency of the results on vertical transverse dispersivity, are compatible with the hypothesis of fringe-controlled aerobic biodegradation of the phenoxy acids.  相似文献   

9.
Few studies have demonstrated changes in community structure along a contaminant plume in terms of phylogenetic, functional, and geochemical changes, and such studies are essential to understand how a microbial ecosystem responds to perturbations. Clonal libraries of multiple genes (SSU rDNA, nirK, nirS, amoA, pmoA, and dsrAB) were analyzed from groundwater samples (n = 6) that varied in contaminant levels, and 107 geochemical parameters were measured. Principal components analyses (PCA) were used to compare the relationships among the sites with respect to the biomarker (n = 785 for all sequences) distributions and the geochemical variables. A major portion of the geochemical variance measured among the samples could be accounted for by tetrachloroethene, 99Tc, No3, SO4, Al, and Th. The PCA based on the distribution of unique biomarkers resulted in different groupings compared to the geochemical analysis, but when the SSU rRNA gene libraries were directly compared (deltaC(xy) values) the sites were clustered in a similar fashion compared to geochemical measures. The PCA based upon functional gene distributions each predicted different relationships among the sites, and comparisons of Euclidean distances based upon diversity indices for all functional genes (n = 432) grouped the sites by extreme or intermediate contaminant levels. The data suggested that the sites with low and high perturbations were functionally more similar than sites with intermediate conditions, and perhaps captured the overall community structure better than a single phylogenetic biomarker. Moreover, even though the background site was phylogenetically and geochemically distinct from the acidic sites, the extreme conditions of the acidic samples might be more analogous to the limiting nutrient conditions of the background site. An understanding of microbial community-level responses within an ecological framework would provide better insight for restoration strategies at contaminated field sites.  相似文献   

10.
Although phased out of many residential uses in the United States, the disposal of CCA-treated wood remains a concern because significant quantities have yet to be taken out of service, and it is commonly disposed in landfills. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills. The goal of this research was to simulate the complex chemical and biological activity of a construction and demolition (C&D) debris landfill containing a realistic quantity of CCA-treated wood (10% by mass), produce leachate, and then evaluate the arsenic, copper, and chromium concentrations in the leachate as an indication of what may occur in a landfill setting. Copper concentrations were not significantly elevated in the control or experimental simulated landfill setting (alpha = 0.05). However, the concentrations of arsenic and chromium were significantly higher in the experimental simulated landfill leachate compared to the control simulated landfill leachate (alpha = 0.05, p < 0.001). This indicates that disposal of CCA-treated wood with C&D debris can impact leachate quality which, in turn could affect leachate management practices or aquifers below unlined landfills.  相似文献   

11.
Microbial communities indigenous to a shallow groundwater system near Beaufort, SC, degraded milligram per liter concentrations of methyl tert-butyl ether (MTBE) under natural and artificial oxic conditions. Significant MTBE biodegradation was observed where anoxic, MTBE-contaminated groundwater discharged to a concrete-lined ditch. In the anoxic groundwater adjacent to the ditch, concentrations of MTBE were > 1 mg/L. Where groundwater discharge occurs, dissolved oxygen (DO) concentrations beneath the ditch exceeded 1.0 mg/Lto a depth of 1.5 m, and MTBE concentrations decreased to <1 microg/L prior to discharge. MTBE mass flux calculations indicate that 96% of MTBE mass loss occurs in the relatively small oxic zone prior to discharge. Samples of a natural microbial biofilm present in the oxic zone beneath the ditch completely degraded [U-14C]MTBE to [14C]CO2 in laboratory liquid culture studies, with no accumulation of intermediate compounds. Upgradient of the ditch in the anoxic, MTBE- and BTEX-contaminated aquifer, addition of a soluble oxygen release compound resulted in oxic conditions and rapid MTBE biodegradation by indigenous microorganisms. In an observation well located closest to the oxygen addition area, DO concentrations increased from 0.4 to 12 mg/L in <60 days and MTBE concentrations decreased from 20 to 3 mg/L. In the same time period at a downgradient observation well, DO increased from <0.2 to 2 mg/L and MTBE concentrations decreased from 30 to <5 mg/L. These results indicate that microorganisms indigenous to the groundwater system at this site can degrade milligram per liter concentrations of MTBE under natural and artificial oxic conditions.  相似文献   

12.
基于微生物培养技术和高通量测序技术研究了制曲原料和制曲方式对酱香大曲微生物数量、细菌群落结构及其功能基因的影响。研究结果表明:制曲原料相较于制曲方式对微生物数量的影响更大,有机小麦和人工踩曲均有利于细菌和霉菌的生长繁殖;实验选取的酱香大曲优势细菌门包括厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、norank_Bacteria,优势细菌属包括Kroppenstedtia、芽孢杆菌属(Bacillus)、不动杆菌属(Acinetobacter)、支芽孢杆菌属(Virgibacillus)和高温放线菌属(Thermoactinomyces)等16个属;在细菌群落调节机制和中心(Hub)微生物方面,不同制曲条件下生产的酱香大曲有所差异;就细菌群落多样性和丰度而言,机械有机大曲和人工普通大曲略优于机械普通大曲,但机械普通大曲与机械有机大曲较为相似,与人工普通大曲极为相似;PICRUSt功能基因预测结果表明,机械曲和人工曲、普通小麦曲和有机小麦曲在细菌群落功能基因上均存在不同程度的相似性,但机械曲与人工曲之间更为接近。该研究对比了不同制曲原料和制曲方式条件下酱香大曲的微生物数量、细菌群落结构和细菌功能基因,对于改善提高贵州酱香型白酒品质具有一定的指导意义。  相似文献   

13.
The association between protists, bacteria, and dissolved organic carbon (DOC) in an oxygen-depleted, 6 km-long wastewater contaminant plume within a sandy aquifer (Cape Cod, MA) was investigated by comparing abundance patterns along longitudinal and vertical transects and at a control site. Strong linear correlations were observed between unattached bacterial abundance and DOC for much of the upgradient-half of the plume (0.1-2.5 km downgradient from the source) that is characterized by quasi-steady state chemistry. However, a logarithmic decrease was observed between the number of protists supported per mg of DOC and the estimated age of the DOC within the plume. The relatively labile dissolved organic contaminants that characterize the groundwater sampled from the plume < or = 0.1 km downgradient from the contaminant source appeared to indirectly support 3-4 times as many protists (per mg of DOC) as the older, more recalcitrant DOC in the alkylbenzene sulfonate (ABS)-contaminated zone at 3 km downgradient (approximately 30 years travel time). Substantive numbers of protists (>10(4)/cm3) were recovered from suboxic zones of the plume. The higher than expected ratios of protists to unattached bacteria (10 to 100:1) observed in much of the plume suggest that protists may be grazing upon both surface-associated and unattached bacterial communities to meet their nutritional requirements. In closed bottle incubation experiments, the presence of protists caused an increase in bacterial growth rate, which became more apparent at higher amendments of labile DOC (3-20 mgC/L). The presence of protists resulted in an increase in the apparent substrate saturation level for the unattached bacterial community, suggesting an important role for protists in the fate of more-labile aquifer organic contaminants.  相似文献   

14.
A laboratory microcosm study and a pilot scale field test were conducted to evaluate biostimulation and bioaugmentation to dechlorinate tetrachloroethene (PCE) to ethene at Kelly Air Force Base. The site groundwater contained about 1 mg/L of PCE and lower amounts of trichloroethene (TCE) and cis-1,2-dichloroethene (cDCE). Laboratory microcosms inoculated with soil and groundwater from the site exhibited partial dechlorination of TCE to cDCE when amended with lactate or methanol. Following the addition of a dechlorinating enrichment culture, KB-1, the chlorinated ethenes in the microcosms were completely converted to ethene. The KB-1 culture is a natural dechlorinating microbial consortium that contains phylogenetic relatives of Dehalococcoides ethenogenes. The ability of KB-1 to stimulate biodegradation of chlorinated ethenes in situ was explored using a closed loop recirculation cell with a pore volume of approximately 64,000 L The pilot test area (PTA) groundwater was first amended with methanol and acetate to establish reducing conditions. Under these conditions, dechlorination of PCE to cDCE was observed. Thirteen liters of the KB-1 culture were then injected into the subsurface. Within 200 days, the concentrations of PCE, TCE, and cis-1,2-DCE within the PTA were all below 5 microg/L, and ethene production accounted for the observed mass loss. The maximum rates of dechlorination estimated from field date were rapid (half-lives of a few hours). Throughout the pilot test period, groundwater samples were assayed for the presence of Dehalococcoides using both a Dehalococcoides-specific PCR assay and 16S rDNA sequence information. The sequences detected in the PTA after bioaugmentation were specific to the Dehalococcoides species in the KB-1 culture. These sequences were observed to progressively increase in abundance and spread downgradient within the PTA. These results confirm that organisms in the KB-1 culture populated the PTA aquifer and contributed to the stimulation of dechlorination beyond cDCE to ethene.  相似文献   

15.
16.
Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m(-2)) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m(-2)) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.  相似文献   

17.
酸笋富含挥发性风味物质、有机酸、细菌素等,是重要的副食品之一。为全面了解酸笋微生物种类及特征,以桂林、柳州、来宾、百色、南宁、贵港6个传统产地的酸笋为对象,采用Illumina HiSeq宏基因组测序技术对酸笋发酵液测序,并对群落结构、多样性及功能基因进行分析。结果表明,6个产地酸笋样品中共鉴定出156种微生物,乳杆菌属(Lactobacillus)占主要优势,种类比例高达81%,其中植物乳杆菌(L. plantarum)等12种乳杆菌为主要菌种。α多样性表明,贵港地区的微生物多样性最高(shannon指数1.65),检测到的微生物种类最多(77种)。β多样性表明,桂林、柳州、来宾3个产地酸笋微生物组成相似;百色、南宁酸笋微生物组成相似;而贵港与其他5个产地的微生物组成差异较大。12 751个unigene注释到代谢通路中,分属385类代谢通路,其中2 927个unigene参与碳水化合物代谢。本研究结果为进一步研究酸笋品质形成机制、发掘微生物资源提供依据。  相似文献   

18.
A shallow aquifer with different redox zones overlain by intensive agricultural activity was monitored for the occurrence of 1,2-dichloropropane (DCP) to assess the fate and origin of this pollutant. DCP was detected more frequently in groundwater samples collected in aerobic and nitrate-reducing zones than those collected from iron-reducing zones. Simulated DCP concentrations for groundwater entering an iron-reducing zone were calculated from a fate and transport model that included dispersion, sorption, and hydrolysis but not degradation. Simulated concentrations were well in excess of measured values, suggesting that microbial degradation occurred in the iron-reducing zone. Microcosm experiments were conducted using aquifer samples collected from iron-reducing and aerobic zones to evaluate the potential for microbial degradation of DCP and to explain field observations. Hydrogenolysis of DCP and production of monochlorinated propanes in microcosm experiments occurred only with aquifer materials collected from the iron-reducing zone, and no dechlorination was observed in microcosms established with aquifer materials collected from the aerobic zones. Careful analyses of the DCP/1,2,2-trichloropropane ratios in groundwater indicated that older fumigant formulations were responsible for the high levels of DCP present in this aquifer.  相似文献   

19.
We investigated the effect on soil functioning of adding leachates from municipal solid waste incinerator (MSWI) ashes to laboratory columns (bare soil) and to field experimental plots (bare soil or grass cover). Leachate of MSWI-solidified air pollution control residues (SAPCr) contained more salts but less heavy metals than did MSWI-bottom ash (BA) leachate. Leachate-supplemented soils (BA soil, SAPCr soil) and control (water added) soil (W) were analyzed after 30 days. Potential denitrifying activity (PDA) and potential N2 fixation (acetylene reduction assay, ARA) were measured in controlled conditions. PDA was significantly lower in SAPCr soil than in W soil, both in the laboratory (-45%) and in bare soil in the field (-31%). ARA values were lower in bare SAPCr soil (-54%) and in bare BA (-25%) soil. Both activities remained unaffected by leachate supplementation in soil under permanent grass cover. Automated ribosomal intergenic spacer analysis (A-RISA) fingerprints and RFLP of nifH gene pools were used to assess changes in the structure of bacterial community. Multivariate analysis of these fingerprints revealed that SAPCr leachate had a stronger effect than BA leachate on the total and N2-fixing bacterial communities. Similar results were obtained for laboratory and bare soil field plots, but leachates did not affect nifH gene pools from soil under permanent grass cover. The stronger impact of SAPCr leachate on both structure of bacterial communities and activities supports the conclusion that observed effects would result from the abundance of salts rather than from heavy metal toxicity.  相似文献   

20.
Evidence of seepage from animal waste holding lagoons at a dairy facility in the San Joaquin Valley of California is assessed in the context of a process geochemical model that addresses reactions associated with the formation of the lagoon water as well as reactions occurring upon the mixture of lagoon water with underlying aquifer material. Comparison of model results with observed concentrations of NH4+, K+, PO4(3-), dissolved inorganic carbon, pH, Ca2+, Mg2+, SO4(2-), Cl-, and dissolved Ar in lagoon water samples and groundwater samples suggests three key geochemical processes: (i) off-gassing of significant quantities of CO2 and CH4 during mineralization of manure in the lagoon water, (ii) ion exchange reactions that remove K+ and NH4+ from seepage water as it migrates into the underlying anaerobic aquifer material, and (iii) mineral precipitation reactions involving phosphate and carbonate minerals in the lagoon water in response to an increase in pH as well as in the underlying aquifer from elevated Ca2+ and Mg2+ levels generated by ion exchange. Substantial off-gassing from the lagoons is further indicated by dissolved argon concentrations in lagoon water samples that are below atmospheric equilibrium. As such, Ar may serve as a unique tracer for lagoon water seepage since under-saturated Ar concentrations in groundwater are unlikely to be influenced by any processes other than mechanical mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号