首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Here, a novel adaptive neural sliding mode controller (ANSMC) is proposed to handle the coupling and dynamic uncertainty of MIMO systems. The structure of this model-free new controller is based on a radial basis function neural network (RBFNN) which is derived from Lyapunov stability theory and relaxing Kalman–Yacubovich lemma to monitor the system for tracking a user-defined reference model. The weights of RBFNN can be initialized at zero, then, a novel online tuning algorithm is developed based on Lyapunov stability theory. A boundary layer function is introduced into the updating law to cover the parameter errors and modeling errors, and to guarantee the state errors converge into a specified error bound. An e-modification is added into the updating law to release the assumption of persistent excitation and obtain the appropriate values of the connecting weights of a RBFNN. To evaluate the control performance of the proposed controller, a two-link robot system is chosen as the simulation case. The numerical simulations results show that this novel controller has very good tracking accuracy, stability and robustness.  相似文献   

2.
基于扰动观测器的机器人自适应神经网络跟踪控制研究   总被引:1,自引:0,他引:1  
为解决机器人动力学模型未知问题并提升系统鲁棒性,本文基于扰动观测器,考虑动力学模型未知的情况,设计了一种自适应神经网络(Neural network,NN)跟踪控制器.首先分析了机器人运动学和动力学模型,针对模型已知的情况,提出了刚体机械臂通用模型跟踪控制策略;在考虑动力学模型未知的情况下,利用径向基函数(Radial basis function,RBF)神经网络设计基于全状态反馈的自适应神经网络跟踪控制器,并通过设计扰动观测器补偿系统中的未知扰动.利用李雅普诺夫理论证明所提出的控制策略可以使闭环系统误差信号半全局一致有界(Semi-globally uniformly bounded,SGUB),并通过选择合适的增益参数可以将跟踪误差收敛到零域.仿真结果证明所提出算法的有效性并且所提出的控制器在Baxter机器人平台上得到了实验验证.  相似文献   

3.
This paper presents a backstepping control method using radial‐basis‐function neural network (RBFNN) for improving trajectory tracking performance of a robotic helicopter. Many well‐known nonlinear controllers for robotic helicopters have been constructed based on the approximate dynamic model in which the coupling effect is neglected; their qualitative behavior must be further analyzed to ensure that the unmodeled dynamics do not destroy the stability of the closed‐loop system. In order to improve the controller design process, the proposed controller is developed based on the complete dynamic model of robotic helicopters by using an RBFNN function approximation to the neglected dynamic uncertainties, and then proving that all the trajectory tracking error variables are globally ultimately bounded and converge to a neighborhood of the origin. The merits of the proposal controller are exemplified by four numerical simulations, showing that the proposed controller outperforms a well‐known controller in (J. Robust Nonlinear Control 2004; 14 (12):1035–1059). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A novel adaptive predefined-time tracking control algorithm is proposed for the Euler–Lagrange systems (ELSs) with model uncertainties and actuator faults. Compared with traditional finite-time and fixed-time studies, the system output tracking error under the proposed predefined-time controller converges to a small neighborhood of zero in finite time, whose upper bound is exactly a design parameter in the control algorithm. For the uncertain model, radial-based function neural network (RBFNN) is utilized to approximate the continuous uncertain dynamics. To deal with the actuator faults, an adaptive control law is involved in the fault-tolerant controller. In order to achieve the predefined-time bounded, a novel predefined-time sliding mode surface is designed. It is proved that the tracking error vector trajectory of closed-loop system is semi-globally uniformly ultimately predefined-time bounded, and the upper bounds of both the system settling time and the corresponding output tracking error can be adjusted with a simple parameter. Simulation examples finally demonstrate the effectiveness of the proposed control algorithm.  相似文献   

5.
针对传统的视觉伺服方法中图像几何特征的标记、提取与匹配过程复杂且通用性差等问题,本文提出了一种基于图像矩的机器人四自由度(4DOF)视觉伺服方法.首先建立了眼在手系统中图像矩与机器人位姿之间的非线性增量变换关系,为利用图像矩进行机器人视觉伺服控制提供了理论基础,然后在未对摄像机与手眼关系进行标定的情况下,利用反向传播(BP)神经网络的非线性映射特性设计了基于图像矩的机器人视觉伺服控制方案,最后用训练好的神经刚络进行了视觉伺服跟踪控制.实验结果表明基于本文算法可实现0.5 mm的位置与0.5°的姿态跟踪精度,验证了算法的的有效性与较好的伺服性能.  相似文献   

6.
基于径向基函数神经网络的机器人滑模控制   总被引:1,自引:0,他引:1  
林雷  任华彬  王洪瑞 《控制工程》2007,14(2):224-226
尽管滑模控制响应快,对系统参数和外部扰动呈不变性,但在保证系统的渐进稳定性上却存在很强的抖动缺点.因此,在一般滑模控制的基础上,引入了径向基函数神经网络(RBFNN).利用滑模控制的特点设定目标函数,将切换函数作为RBFNN的输入,滑模控制量作为其输出.利用RBF神经网络的在线学习功能,消除了控制的抖动,同时使系统具有很强的鲁棒性.对两连杆机械手进行了仿真研究,其结果表明,在存在模型误差和外部扰动的情况下,该方案既能达到高精度快速跟踪的目的,又能消除滑模控制的抖动问题.  相似文献   

7.

This paper proposes a neural approximation based model predictive control approach for tracking control of a nonholonomic wheel-legged robot in complex environments, which features mechanical model uncertainty and unknown disturbances. In order to guarantee the tracking performance of wheel-legged robots in an uncertain environment, effective approaches for reliable tracking control should be investigated with the consideration of the disturbances, including internal-robot friction and external physical interactions in the robot’s dynamical system. In this paper, a radial basis function neural network (RBFNN) approximation based model predictive controller (NMPC) is designed and employed to improve the tracking performance for nonholonomic wheel-legged robots. Some demonstrations using a BIT-NAZA robot are performed to illustrate the performance of the proposed hybrid control strategy. The results indicate that the proposed methodology can achieve promising tracking performance in terms of accuracy and stability.

  相似文献   

8.
Multiaxial hydraulic manipulators are complicated systems with highly nonlinear dynamics and various modeling uncertainties, which hinders the development of high-performance controller. In this paper, a neural network feedforward with a robust integral of the sign of the error (RISE) feedback is proposed for high precise tracking control of hydraulic manipulator systems. The established nonlinear model takes three-axis dynamic coupling, hydraulic actuator dynamics, and nonlinear friction effects into consideration. A radial basis function neural network (RBFNN) is synthesized to approximate the uncertain system dynamics and external disturbance, which can greatly reduce the dependence on accurate system model. In addition, a continuous RISE feedback law is judiciously integrated to deal with the residual unknown dynamics. Since the major unknown dynamics can be estimated by the RBFNN and then compensated in the feedforward design, the high-gain feedback issue in RISE feedback control will be avoided. The proposed RISE-based neural network robust controller theoretically guarantees an excellent semi-global asymptotic stability. Comparative simulation is performed on a 3-DOF hydraulic manipulator, and the obtained results verify the effectiveness of the proposed controller.  相似文献   

9.
In this paper, an adaptive neural network (NN) switching control strategy is proposed for the trajectory tracking problem of robotic manipulators. The proposed system comprises an adaptive switching neural controller and the associated robust compensation control law. Based on the Lyapunov stability theorem and average dwell-time approach, it is shown that the proposed control scheme can guarantee tracking performance of the robotic manipulators system, in the sense that all variables of the closed-loop system are bounded and the effect due to the external disturbance and approximate error of radical basis function (RBF) NNs on the tracking error can be converged to zero in an infinite time. Finally, simulation results on a two-link robotic manipulator show the feasibility and validity of the proposed control scheme.  相似文献   

10.
The finite time tracking control of n-link robotic system is studied for model uncertainties and actuator saturation. Firstly, a smooth function and adaptive fuzzy neural network online learning algorithm are designed to address the actuator saturation and dynamic model uncertainties. Secondly, a new finite-time command filtered technique is proposed to filter the virtual control signal. The improved error compensation signal can reduce the impact of filtering errors, and the tracking errors of system quickly converge to a smaller compact set within finite time. Finally, adaptive fuzzy neural network finite-time command filtered control achieves finite-time stability through Lyapunov stability criterion. Simulation results verify the effectiveness of the proposed control.  相似文献   

11.
In this paper, an adaptive neural tracking control approach is proposed for a class of nonlinear systems with dynamic uncertainties. The radial basis function neural networks (RBFNNs) are used to estimate the unknown nonlinear uncertainties, and then a novel adaptive neural scheme is developed, via backstepping technique. In the controller design, instead of using RBFNN to approximate each unknown function, we lump all unknown functions into a suitable unknown function that is approximated by only a RBFNN in each step of the backstepping. It is shown that the designed controller can guarantee that all signals in the closed-loop system are semi-globally bounded and the tracking error finally converges to a small domain around the origin. Two examples are given to demonstrate the effectiveness of the proposed control scheme.  相似文献   

12.
This paper presents an adaptive nonsingular terminal sliding mode (NTSM) tracking control design for robotic systems using fuzzy wavelet networks. Compared with linear hyperplane-based sliding control, terminal sliding mode controller can provide faster convergence and higher precision control. Therefore, a terminal sliding controller combined with the fuzzy wavelet network, which can accurately approximate unknown dynamics of robotic systems by using an adaptive learning algorithm, is an attractive control approach for robots. In addition, the proposed learning algorithm can on-line tune parameters of dilation and translation of fuzzy wavelet basis functions and hidden-to-output weights. Therefore, a robust control law is used to eliminate uncertainties including the inevitable approximation errors resulted from the finite number of fuzzy wavelet basis functions. The proposed controller requires no prior knowledge about the dynamics of the robot and no off-line learning phase. Moreover, both tracking performance and stability of the closed-loop robotic system can be guaranteed by Lyapunov theory. Finally, the effectiveness of the fuzzy wavelet network-based control approach is illustrated through comparative simulations on a six-link robot manipulator  相似文献   

13.
李艳东  朱玲  郭媛  于颖 《信息与控制》2019,48(6):649-657
针对带多不确定性的一组非完整移动机器人的编队控制收敛问题,提出了基于径向基函数神经网络的移动机器人多变量固定时间领航者-跟随者编队控制算法.RBFNN补偿了系统所受的多不确定性,并消除了鲁棒控制的抖振现象.基于固定时间理论和Lyapunov方法进行了控制算法设计,使所提出的控制方法保证了编队控制系统中的所有信号全局固定时间收敛,在任意系统初始条件下,在通过参数设计的固定时间内,使机器人编队达到期望编队.仿真结果显示了所提出算法的有效性.  相似文献   

14.
In this paper, an iterative learning controller using neural networks has been studied for the motion control of robotic manipulators. Simulations of a two-link robot have demonstrated that the proposed control scheme for robotic manipulators can greatly reduce tracking errors after a few trials. Our modification of the original back-propagation algorithm is employed in the neural network, resulting in a much faster learning rate. The results of simulation have also shown that the proposed iterative learning controller has a faster rate of convergence and better robustness.  相似文献   

15.
This paper proposes an adaptive recurrent neural network control (ARNNC) system with structure adaptation algorithm for the uncertain nonlinear systems. The developed ARNNC system is composed of a neural controller and a robust controller. The neural controller which uses a self-structuring recurrent neural network (SRNN) is the principal controller, and the robust controller is designed to achieve L 2 tracking performance with desired attenuation level. The SRNN approximator is used to online estimate an ideal tracking controller with the online structuring and parameter learning algorithms. The structure learning possesses the ability of both adding and pruning hidden neurons, and the parameter learning adjusts the interconnection weights of neural network to achieve favorable approximation performance. And, by the L 2 control design technique, the worst effect of approximation error on the tracking error can be attenuated to be less or equal to a specified level. Finally, the proposed ARNNC system with structure adaptation algorithm is applied to control two nonlinear dynamic systems. Simulation results prove that the proposed ARNNC system with structure adaptation algorithm can achieve favorable tracking performance even unknown the control system dynamics function.  相似文献   

16.
In this paper, an intelligent novel vision-based robotic tracking model is developed to predict the performance of human trajectories with a novel vision-based robotic tracking system. The developed model is based on wavelet packet decomposition, entropy and neural network. We represent an implementation of a novel vision-based robotic tracking system based on wavelet decomposition and artificial neural (WD-ANN) which can track desired human trajectory pattern in real environments. The input–output data set of the novel vision-based robotic tracking system were first stored and than these data sets were used to predict the robotic tracking based on WD-ANN. In simulations, performance measures were obtained to compare the predicted and human–robot trajectories like actual values for model validation. In statistical analysis, the RMS value is 0.0729 and the R2 value is 99.76% for the WD-ANN model. This study shows that the values predicted with the WD-ANN can be used to predict human trajectory by vision-based robotic tracking system quite accurately. All simulations have shown that the proposed method is more effective and controls the systems quite successful.  相似文献   

17.
提出一种针对机器人跟踪控制的神经网络自适应滑模控制策略。该控制方案将神经网络的非线性映射能力与滑模变结构和自适应控制相结合。对于机器人中不确定项,通过RBF网络分别进行自适应补偿,并通过滑模变结构控制器和自适应控制器消除逼近误差。同时基于Lyapunov理论保证机器手轨迹跟踪误差渐进收敛于零。仿真结果表明了该方法的优越性和有效性。  相似文献   

18.
This paper presents an adaptive PI Hermite neural control (APIHNC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The proposed APIHNC system is composed of a neural controller and a robust compensator. The neural controller uses a three-layer Hermite neural network (HNN) to online mimic an ideal controller and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Moreover, a proportional–integral learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed APIHNC system is applied to an inverted double pendulums and a two-link robotic manipulator. Simulation results verify that the proposed APIHNC system can achieve high-precision tracking performance. It should be emphasized that the proposed APIHNC system is clearly and easily used for real-time applications.  相似文献   

19.
A neural network (NN)-based adaptive controller with an observer is proposed for the trajectory tracking of robotic manipulators with unknown dynamics nonlinearities. It is assumed that the robotic manipulator has only joint angle position measurements. A linear observer is used to estimate the robot joint angle velocity, while NNs are employed to further improve the control performance of the controlled system through approximating the modified robot dynamics function. The adaptive controller for robots with an observer can guarantee the uniform ultimate bounds of the tracking errors and the observer errors as well as the bounds of the NN weights. For performance comparisons, the conventional adaptive algorithm with an observer using linearity in parameters of the robot dynamics is also developed in the same control framework as the NN approach for online approximating unknown nonlinearities of the robot dynamics. Main theoretical results for designing such an observer-based adaptive controller with the NN approach using multilayer NNs with sigmoidal activation functions, as well as with the conventional adaptive approach using linearity in parameters of the robot dynamics are given. The performance comparisons between the NN approach and the conventional adaptation approach with an observer is carried out to show the advantages of the proposed control approaches through simulation studies  相似文献   

20.
非仿射纯反馈系统的间接自适应神经网络控制   总被引:1,自引:0,他引:1  
针对非仿射纯反馈系统,提出了一种新的设计方案.与现有文献中方法不同,该方案不是直接利用逼近技巧构建理想的反馈控制器.首先通过自抗扰思想将非仿射纯反馈系统转化成含有未知控制系数以及未知非线性的仿射系统,并且证明了可行性.然后结合微分器和全调节径向基函数神经网络,利用自适应反演技巧设计了自抗扰控制器,微分器的引入避免了传统反演的计算复杂性.最后,从理论上证明了所设计的控制器能够保证闭环系统所有信号半全局一致有界,并且证明了系统状态渐进收敛到零点的残集内.仿真例子验证了算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号