首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
微波集成电路技术——回顾与展望   总被引:8,自引:4,他引:4       下载免费PDF全文
顾墨林  林守远 《微波学报》2000,16(3):278-290
半个多世纪来,微波电路技术经历了从分立电路、两维微波集成电路、三维微波集成电路等阶段。在回顾这一发展历程后,介绍多层微波集成电路和三维微波集成电路。阐述其产生背景、关键技术及发展方向。文中将涉及微加工技术以及从直流至射频的多芯片全集成新概念。瞻望二十一世纪前景。  相似文献   

2.
半个多世纪来 ,微波电路技术经历了从分立电路、两维微波集成电路、三维微波集成电路等阶段。在回顾这一发展历程后 ,介绍多层微波集成电路和三维微波集成电路。阐述其产生背景、关键技术及发展方向。文中将涉及微加工技术以及从直流至射频的多芯片全集成新概念。瞻望二十一世纪前景。  相似文献   

3.
传统的体微加工是指薄片上的各向异性刻蚀。该技术当前已被广泛使用,它的缺点是结构一般相对较大,所以要占据绝大部分的芯片空间。在晶片的背面进行腐蚀,大多是由(111)面来形成侧壁,垂直壁可由(110)面形成。可以看出,这种微加工方法是双向完成的。该技术的一个优点是不需要高温,微加工是以后处理方式进行的,且多数都是用KOH作腐蚀液。然而,如果接续下来的工作也需在超净室中完成测最好的选择是TMAH。  相似文献   

4.
可自上而下贯穿整个芯片的硅贯通电极技术将会带来半导体芯片几十年一次的结构革命(见图1)。将布满了电路的半导体晶圆削薄至100gm以下,使背面几乎通透可见,然后在芯片上任意开几个贯通孔,通过电镀的方式形成电极。也有一些半导体厂家采用先形成贯通电极,然后再将晶圆削薄的方法。由于该电极是使用半导体的微加工技术所形成的,因此电极直径非常小,仅有几μm~几十μm。如果在整个芯片上均打上孔,则可以形成数千甚至数万个贯通电极。  相似文献   

5.
美国《财富》杂志在97年载文指出,在20世纪科技史上有两件事值得大书特书,一是微电子芯片,它是计算机和许多家电的心脏,改变了我们的经济和文化生活;另一件事就是生物芯片,它将改变生命科学的研究方式,革新医学诊断和治疗,极大地提高人口的素质和健康水平。生物芯片即应用于生命科学和医学领域中用来进行高通量分析检测的器件。其加工制作采用了像集成电路制作过程中半导体光刻那样的微加工技术,生物芯片将生命科学中许多不连续的过程,如样品制备、化学反应和检测步骤移植到芯片中并使其连续化和微型化,这与当年将数间房屋大…  相似文献   

6.
在集成电路设计技术已进入第四代的今天,一个电子系统或分系统可以完全集成在一个芯片之上,即系统芯片(SOC)集成。随着设计规模增大、电路性能的提高和设计的复杂度大大增加,相应地,对设计方法学提出了更高的要求。  相似文献   

7.
大多数激光材料加工应用都落在两个范畴内,即宏观和亚微米范畴。宏观加工应用指的是焊接、切削和钢板、纸张、尼龙材料的切割。在加工尺寸的另一端,对半导体的亚微米加工可制作现代大容量存储器和中央处理器(CPU)芯片。介于这两者之间的加工方式称做加工,它复盖1μm~1mm之间的范围。读者可能已在广告和文章中看到微加工的图形,如刻写在人头发丝和微型金刚石齿轮上的字符。虽然这种图形有力地说明准分子激光在微加工方面的潜力,但直至最近,这种潜力还没有得到真正实际应用。随着微加工正在成为工业激光市场中最快增长部门之一,以…  相似文献   

8.
随着集成电路设计水平和工艺技术的提高,集成电路规模越来越大,芯片设计规模和设计复杂度也急剧提高,工艺流程呈现专业化,EDA设计逐步发展和完善。到了九十年代出现了SoC芯片(系统级芯片),即可以在一个芯片上包括了CPU、DSP、逻辑电路、模拟电路、射频电路、存储器和其它电路模块以及嵌入软件等,并相互连接构成完整的系统。由于系统设计日益复杂,设计业出现了专门从事开发各种实现不同功能的IP核的专业公司,  相似文献   

9.
Meth  C 《电子产品世界》1996,(2):50-53,16
提高汽车性能的微加工传感器最新的微加工技术造价低廉,而用这种技术制作的传感器却可使汽车安全得多Clifford Meth新一代的微加工传感器不仅使汽车驾驶起来更加安全,而且也可降低制造费用。微(机械)加工(micromachining)决不是一种新技...  相似文献   

10.
生物芯片技术的发展与应用   总被引:3,自引:0,他引:3  
生物芯片(biochip)技术是20世纪90年代初期发展起来的一门新兴技术。通过微加工技术制作的生物芯片,可以把成千上万乃至几十万个生命信息集成在一个很小的芯片上,达到对基因、抗原和活体细胞等进行分析和检测的目的。该技术可快速、微量、准确地诊断疾病从而了解病情,达到非常精确的要求,芯片的实质是在面积不大的基本表面上有序的点阵排列了一系列固定于一定位置的可寻址的识别分子,使他们在相同的条件下进行结合或反应,反应结果用化学荧光法显示然后用精密的扫描仪或CCD摄像技术记录结果,再通过计算机软件分析并综合成IC总信息。  相似文献   

11.
随着电路集成工艺、微电子技术的发展,集成电路其集成度日益提高,一直到10亿门,芯片最小线宽到纳米级,同时集成工艺和其他学科相结合,诞生了新的学科。对于更高的集成度的芯片设计,复杂度加大,基于IP核的片上系统(SOC)设计技术基本解决了当前的设计难题,但这些新的技术还需要不断的改进和完善。  相似文献   

12.
纳米岛光刻技术及其应用   总被引:2,自引:0,他引:2  
介绍了一种基于微加工技术的新方法——纳米岛光刻技术。利用该技术制造出几十纳米到微米尺度的岛结构,然后利用剥离、刻蚀等微加工技术,将该岛转化成纳米孔、纳米岛、纳米井等结构。该技术的特点是能够制造出具有各种密度的纳米结构(最高覆盖率可达50%以上),且开发成本低,工艺性能优越,是一种有效制造纳米岛结构的专业方法。  相似文献   

13.
本文研究了激光微加工中常用的激光微细焊接和多脉冲打孔技术。着重论述了激光微加工的性能质量的检测手段与方法,分析了激光微加工的独特性能和它与电子束加工技术的区别。  相似文献   

14.
李旭 《通讯世界》2016,(6):247-247
飞秒激光具有超精细三维微加工、高聚焦能力、超强峰值功率、超短脉冲等特点,在其逐渐发展过程中飞秒激光以其自身的这些特点被应用到各个领域中,其中应用最多的就是飞秒激光的微加工技术。因此本文主要研究飞秒激光在微加工领域中微加工金属材料、微加工耦合器和光波导、微加工光子晶体、微加工光线器材中的具体应用。  相似文献   

15.
准分子激光微加工技术结合模塑技术加工微流控芯片   总被引:1,自引:0,他引:1  
利用准分子激光微加工技术与模塑技术相结合的方法制造微流控芯片。用准分子激光在玻璃基胶层上刻蚀出加工质量较高的微流控生物芯片形貌,通过电铸技术对微流控芯片进行复制,得到反向金属模具。用金属模具通过注塑成型技术用聚碳酸酯注塑出微流控芯片。系统研究了准分子激光的能量密度和工作台移动速度对胶层微通道加工质量的影响;测量并分析了激光刻蚀加工出的微流控芯片原型、电铸的反向金属模板和注塑成型后的微流控芯片的轮廓精度和表面粗糙度,上表面尺度偏差不大于2μm,底面粗糙度小于20 nm。对注塑出的微流控芯片和激光直写刻蚀的几何结构相同的微流控芯片的流动性能进行比较测试。在流速较小时,用激光微加工技术与模塑技术相结合的方法加工的微通道比准分子激光直写法所加工的微通道流动性能更好。  相似文献   

16.
本文对微加工和太赫兹真空电子器件技术进展进行了评论,讨论了微加工和太赫兹真空电子器件可能的应用,也研究了微型器件、微加工的关键技术和需要进一步研究的理论和技术问题。  相似文献   

17.
本文描述了正在发展中的微加工技术 ,主要包括光学加工技术和精密机械加工技术。1 非球面加工  非球面加工是光学零件加工中的重要技术之一。在最初开发冲压玻璃技术时 ,没有人会预料到它会取得划时代的进一步。直到人们对轴外非球面加工、大型非球面加工进行深入的研究之后 ,才感到这项技术已成熟。其间发表了大量的相关论文 ,如介绍了用该项技术在波导上形成非球面透镜等 ,从而形成了微非球面加工这一新领域。2 微加工  本文所描述的微加工并非传统意义上的微加工 ,其加工对象是亚毫米到毫米级部件。这项技术不仅在光学领域 ,而且在…  相似文献   

18.
折叠波导行波管及微加工技术   总被引:3,自引:0,他引:3  
随着真空微电子学和微加工技术的发展,微真空电子器件的研究范围日益扩展并逐步扩大了各领域的重要应用。研究表明:毫米波折叠波导行波管已成为国际范围THz器件的研究重点。本文扼要地介绍了美国威斯康星大学对折叠波导行波管的研究情况,包括设计、缩尺实验、采用的制造技术以及某些其他微真空电子器件和微加工制造方法。  相似文献   

19.
微机电系统(MEMS)是由微加工技术制造的微型传感器、微型执行器及集成电路组成的器件或系统.介绍了MEMS技术的研究背景和发展历程,着重阐述了微机电系统的核心技术和商业应用,其中特别提到了单芯片系统方面的前沿研究,最后就MEMS技术的前景和研究方向进行了探讨和展望.  相似文献   

20.
激光微加工的进展   总被引:1,自引:0,他引:1  
耿淑杰  王琳 《激光与红外》1997,27(6):330-332
介绍了用于微加工的激光器种类和特点,并阐述了国外激光微加工的研制情况及其发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号