首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a computation scheme that generates optimized tool path for five-axis flank milling of ruled surface. Tool path planning is transformed into a matching problem between two point sets in 3D space, sampled from the boundary curves of the machined surface. Each connection in the matching corresponds to a possible tool position. Dynamic programming techniques are applied to obtain the optimal combination of tool positions with the objective function as machining error. The error estimation considers both the deviation induced by the cutter at discrete positions and the one between them. The path planning problem is thus solved in a systematic manner by formulizing it as a mathematical programming task. In addition, the scheme incorporates several optimization parameters that allow generating new patterns of tool motion. Implementation results obtained from simulation and experiment indicate that our method produces better machining quality. This work provides a concise but effective approach for machining error control in five-axis flank milling.  相似文献   

2.
This article covers side milling of ruled surfaces using a milling cutter. Flank milling is useful for machining objects such as impellers, turbine blades, fan vanes and all workpieces defined by non-developable, ruled surfaces. In the present article, the influence of parameters defining improved positioning described in a previous study will be appraised. The general idea with improved positioning is to position the milling cutter at a tangent to the 2 directrices of the ruled surface while keeping a point of contact between the milling cutter and the rule considered. This is obtained by a rotation at a point about an imposed axis. Having defined calculation of error between the milled surface and the nominal surface, the influence of the point and the axis of rotation of improved positioning on error will be studied. From this, optimum improved positioning parameters allowing minimisation of error between the ruled surface and the milling cutter will be deduced.  相似文献   

3.
Focused on the reverse movements of moving axes along five-axis tool paths, this study presents a procedure of removing a gouge phenomenon on impeller surfaces in five-axis machining. That is, when an impeller of a centrifugal compressor is being cut in finish milling, reverse movements and/or other linearization problems of moving axes along a five-axis interference-free tool path may make a cutter leave tool marks on the impeller surfaces. For generating interference-free cutter location (CL) data needed in rough, semi-finish and finish five-axis cutting processes, first, a simple yet useful approach is proposed. To identify the potential gouge area and to solve the problem for a tool path having reverse motion directions with its moving axes in finish milling, the CL data are further smoothed to remove the reverse movements about its rotating and tilting axes. The effectiveness of this procedure has been experimentally confirmed by successful five-axis finish milling of an impeller without leaving tool marks on its surfaces. In addition, with the spline tool paths, the machining time can be saved up to 23.57%.  相似文献   

4.
Existing orientation strategies in 5-axis sculptured surface machining mostly limit the cutter to incline in one direction and lack an effective approach to assess the orientation. This paper presents the quadric method (QM) that exploits fully the two orientation angles to maximise the machining efficiency at a cutter contact point. The geometric construction assumes that the local shape of a sculptured surface can be suitably approximated by two quadrics. An upper quadric lying above the surface is used to orient the cutter, and a lower quadric lying below the surface is used to evaluate machined strip width. Then, the cutter orientation is optimised with respect to the width and is guaranteed to give no gouging. Both flat-end cutter and fillet-end cutter are considered. Simulated examples demonstrate the improved machining efficiency of the QM over current published methods.  相似文献   

5.
Motivated by the excellent performance of three-axis NURBS interpolation, this paper presents a numerically efficient and accuracy controllable five-axis sculptured surface machining method with dual NURBS curve. Unlike the traditional three-axis NURBS interpolation, a dual NURBS format of the five-axis toolpath is developed to accurately and smoothly describe the tool movement in the part coordinate system. Different from the subdivision methods using the Taylor series expansion or inverse function, a piece-wise Bézier curve method is implemented to fast subdivide the NURBS curve within the user-defined tolerance. A generic rotation tool center point management module is also designed to realize the coordinate transformation and adaptive nonlinear error control for major five-axis machine tools. The overall effectiveness of the proposed five-axis NURBS machining scheme is demonstrated by the five-axis machining of an impeller’s flow channel.  相似文献   

6.
分析五轴数控机床的特点和五轴加工中的各种误差,提出在使用五轴数控机床中应注重一些问题,以合理利用五轴设备,发挥其优势。  相似文献   

7.
Feed rate optimization for 3-axis ball-end milling of sculptured surfaces   总被引:1,自引:1,他引:1  
The aim of this research is to improve the productivity of CNC machine tools by optimizing feed rate. To optimize feed rate two programs were used: “ACIS” (with scheme language) and “Visual Basic”. The scheme program for modeling the work piece, tool, cutting edge, and calculating maximum cutting force and the Visual Basic program to control all the activities linked to the ACIS program for estimating optimized feed values. Laboratory tests were conducted to verify the results from the modeling, using an insert-type one-flute ball-end cutter on a CK45 carbon steel work piece. No coolant was used throughout the experimental works. Comparisons were made between the maximum cutting forces, in the “fix” feed rate tests. The results indicate significant increases in productivity, which can be achieved, by using the optimized feed rate method.  相似文献   

8.
In the shearing process, clearance has a significant effect on machining accuracy. However, the relationship between uneven clearance caused by misalignment of tool position and machining accuracy remains unclear. This is attributed to the fact that, previously, the effect was small because the thickness of the workpiece was not so thin, and a method for precisely measuring and adjusting the tool position had not been established. Therefore, in the present study, a new method of adjusting the initial tool position is developed. In addition, punching experiments are conducted under the condition that the initial tool position is adjusted to an accuracy of 2 μm or better, and the effects of clearance on machining accuracy, shape of cross-section, and diameter of hole, are investigated in three types of materials. From these results, the importance of adjusting the initial tool position is clarified.  相似文献   

9.
Serial milling machines may one day find their limits in high-speed milling due to their limited dynamic characteristics. Indeed, the major drawback of a serial structure is that it consists of a pile of actuated joints; hence the mass on board for the axis underneath can be huge. This is mainly the reason why parallel structures are of interest in milling: in order to go faster.Such structures have been developed since 1980 for robotic tasks, while the first parallel kinematics machine tool appeared only 14 years later. Since then, very few papers have been published that deal with the potential of these structures in milling. The objective of this study is to show the potentialities of parallel structures in milling and especially in high-speed milling of free form surfaces, in comparison to serial structures. To do so, experiments have been realised on four serial kinematics machines (SKMs) and four parallel kinematics machines (PKMs). These experiments were of two kinds: either a real piece has been milled, or the output axis encoder data have been saved (this method of measurement has been previously developed in our team).So far, a comparison between the two structures (serial and parallel) has been possible, which permitted us to show that PKMs can provide interesting results in terms of time and precision. Hence, the goal of this study has been reached, as the PKMs potentialities in milling free form surfaces have been highlighted. With more experiments, a generalisation, by taking into account all the parameters (shape and material of the part, structure of the machine, etc.), will be attempted. In parallel, the development of our simulator for PKMs is necessary in order to be able to predict milling on these machines.  相似文献   

10.
The compliance with the quality requirements of components is essential for the functionality of the whole product. With respect to parts with face-milled faces, the surface quality and the shape of the workpiece edges are of great interest. Frequently, these faces take over the function of seal faces where high demands on the surface integrity and burr formation exist. To ensure the workpiece quality that is required, nowadays additional processes for deburring are often necessary. To avoid deburring, the modification of machining processes is a promising approach. In this study, the influence of process cooling on workpiece quality is investigated. Using this approach, two effects are expected. The cooling is used to minimize a reduction of flow stress generated from the process heat, which than leads to a lower formability. The second effect relates to the kinetic energy of the snow blast for deburring by deformation and breakage of the burrs. Using a process cooling with carbon dioxide, the surface quality is enhanced and the burr formation is minimized.  相似文献   

11.
Static rigid force model is used to estimate cutting forces of sculptured surface in a straightforward way, without considering tool deflection, machine tool dynamic behavior and any vibration effects. Two programs were used for calculations, “ACIS” the 3-D geometric modeler and “VISUAL BASIC”. Two programs were edited and used to perform the calculations, the scheme program to model the work piece, tool and cutting edge and to obtain the geometric data and the VISUAL BASIC program design to use ACIS geometric data to calculate the cutting forces. The engaged part of the cutting edge and work piece is divided into small differential oblique cutting edge segments. Friction, shear angles and shear stresses are identified from orthogonal cutting database available in literature. The cutting force components, for each tool rotational position, are calculated by summing up the differential cutting forces. Laboratory tests were conducted to verify the predictions of the model. The work pieces were prepared from CK45 steel using an insert-type ball-end cutter. No coolant was used in any of the experimental works. The cutting forces predicted have shown good agreement with experimental results.  相似文献   

12.
A new dynamical modeling of Active Magnetic Bearing Spindle (AMBS) to identify machining stability of High Speed Milling (HSM) is presented. This original modeling includes all the minimum required parameters for stability analysis of AMBS machining. The stability diagram generated with this new model is compared to classical stability lobes theory. Thus, behavior's specificities are highlighted, especially the major importance of forced vibrations for AMBS. Then a sensitivity study shows impacts of several parameters of the controller. For example, gain adjustment shows improvements on stability. Side milling ramp test is used to quickly evaluate the stability. Finally, the simulation results are then validated by HSM cutting tests on a 5 axis machining center with AMBS.  相似文献   

13.
具有4轴以上联动功能的线切割机能加工上下异型的直纹曲面,等步长的直线逼近法被普遍用来实现上下异型体中对应曲线间的同步线性化,这种简易的逼近方法使数控加工代码变得冗长。针对这一问题,提出了轨迹合成中的等误差直线逼近法,使具有非圆轮廓曲线的三维直纹曲面的数控代码量得到明显压缩。  相似文献   

14.
Study of machining accuracy in ultrasonic elliptical vibration cutting   总被引:10,自引:2,他引:10  
The cutting speeds of the tool, the rake angle and clearance angle through the cycles of elliptical vibration cutting for separating type ultrasonic elliptical vibration cutting are defined initially in the present paper. Subsequently, a theoretical model of the thrust cutting force in ultrasonic elliptical vibration cutting is proposed, and the reason of the machining accuracy improvement by applying ultrasonic elliptical vibration is clarified theoretically. Finally, the effect of ultrasonic elliptical vibration cutting on machining accuracy is verified experimentally by utilizing an ultrasonic elliptical vibration cutting system.  相似文献   

15.
This work is motivated by a fact that an excessively worn tool will continue to be used in practical machining of difficult-to-cut materials, such as nickel-based superalloys. Quantitative comparison of worn tool temperature variations with a sharp tool shows great practical significance. A thermal model is presented to describe the coated tool temperature variation in dry milling of nickel-based superalloys for a turbine blade. The influence of flank wear is considered according to the rapid tool wear. In the proposed model, both heat fluxes into the tool from the rake face and due to flank wear are calculated to estimate the tool temperature distribution at different tool states. Feed rate optimization at the convex and concave surfaces of blade based on the force constraints is employed to investigate its influence on heat generation and tool temperature rise. A comparative experiment for dry milling of an Inconel 718 turbine blade is carried out to validate the model. Considering a set of experimental data and the output of the numerical simulations in the present work, a key global heat transfer coefficient (HTC), working as a partitioning coefficient which determines the heat amounts flowing into the chip and the tool, respectively, is assessed through an inverse procedure. This comparison indicates a good agreement in both trends and values. With the alternative method, an accurate simulation of the tool temperature variation can be achieved by the assessed global HTC which is used as an input in the FE model. As the influence of tool wear should be considered, this work can be further employed into the feed rate scheduling guidance in machining complex parts.  相似文献   

16.
Optimization of feedrate is valuable in terms of providing high precision and efficient machining. The surface roughness is particularly sensitive to the feedrate and the runout errors of the inserts in a face-milling operation. This paper analyzes the effects of the insert runout errors and the variation of the feedrate on the surface roughness and the dimensional accuracy in a face-milling operation using a surface roughness model. The validity of the developed model was proved through cutting experiments, and the model was used to predict the machined surface roughness from the information of the insert runouts and the cutting parameters. From the estimated surface roughness value, the optimal feedrate that gave a maximum material removal rate under the given surface roughness constraint could be selected by a bisection method.  相似文献   

17.
Experimental study of surface roughness in slot end milling AL2014-T6   总被引:3,自引:2,他引:3  
The aim of this work was to analyze the influence of cutting condition and tool geometry on surface roughness when slot end milling AL2014-T6. The parameters considered were the cutting speed, feed, depth of cut, concavity and axial relief angles of the end cutting edge of the end mill. Surface roughness models for both dry cutting and coolant conditions were built using the response surface methodology (RSM) and the experimental results. The results showed that the dry-cut roughness was reduced by applying cutting fluid. The significant factors affecting the dry-cut model were the cutting speed, feed, concavity and axial relief angles; while for the coolant model, they were the feed and concavity angle. Surface roughness generally increases with the increase of feed, concavity and axial relief angles, while concavity angle is more than 2.5°.  相似文献   

18.
In this paper, a new methodology for the selection of the milling toolpaths on complex surfaces that minimize dimensional errors due to tool defection is presented. In this way, an improvement on the accuracy of milled surfaces is achieved. The methodology can be applied to both three and five axes milling. In the three axes case, it is based on the calculation of the minimum cutting force component that is related with the tool deflection. This component has been previously defined as that perpendicular to the tool axis and contained on the plane defined by the tool axis and the normal vector to the workpiece surface.Cutting forces are calculated for each 15° sense on the tangent plane to the milled surface, in a grid of control points defined by the user, both for dowmilling and upmilling. With this information there are two possibilities. First, select a general toolpath direction that minimizes the mean value of the tool deflection force on the surface, and bearing this in mind, the CAM operator can produce a CNC program which leads to an accuracy improvement. The second option is the selection of different milling directions at each control point. Joining these points, the minimum force lines are defined on the workpiece surface. These can be used as the master guides for the toolpath programming of a complete surface.In the case of five axes milling, the approach is different, because in this case the tool-axis orientation with respect to the workpiece surface may be changed using the two rotary axes. Therefore, for each workpiece area both tool-axis orientation and machining direction can be selected to keep tool deflection force below a threshold value.Some case studies of both techniques and in-deep discussion of results are presented. Applying this approach, in three axes milling dimensional errors fall down from 30 μm to below 4 μm. In five axes milling errors can be kept below 15 μm in most of the cases.  相似文献   

19.
Inconel 718 is a difficult-to-cut nickel-based superalloy commonly used in aerospace industry. This paper presents an experimental study of the tool wear propagation and cutting force variations in the end milling of Inconel 718 with coated carbide inserts. The experimental results showed that significant flank wear was the predominant failure mode affecting the tool life. The tool flank wear propagation in the up milling operations was more rapid than that in the down milling operations. The cutting force variation along with the tool wear propagation was also analysed. While the thermal effects could be a significant cause for the peak force variation within a single cutting pass, the tool wear propagation was believed to be responsible for the gradual increase of the mean peak force in successive cutting passes.  相似文献   

20.
分析了侧铣不可展直纹面模具的原理性加工误差的来源及特点,提出通过计算被加工表面各点到刀具旋转轴扫掠面的距离以确定误差分布,为刀位主动补偿和后续加工提供了依据。采用有限次离散和平面替代的方法求取点到曲面之间的距离,根据求解精度要求确定曲面最小离散次数,提高了计算效率,平面替代法将问题简化为可精确求解的点到平面的距离问题。实例通过与三坐标测量结果的对比验证了算法的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号