首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The densification and crystallization behaviors of MgO-B2O3-SiO2 (MBS) glass with various amounts of TiO2 additions (0-10 wt.%) were investigated by means of thermal analysis, X-ray powder diffraction and scanning electron microscopy. A microwave dielectric characterization was performed in order to evaluate the suitability of MBS glass-ceramics as a low-permittivity dielectric substrate. The densification of the MBS glass started below 700 °C. The main crystalline phases of Mg2B2O5 and MgSiO3 appeared at 800 and 950 °C, respectively. The Mg3TiB2O8 and TiB0.024O2 phases additionally crystallized in TiO2-added MBS glass-ceramics at 1000 °C. The permittivity increased from 6.1 in pure MBS glass to 6.9 in MBS glass with 10 wt.% of TiO2. The addition of TiO2 enhanced the crystallization and consequently increased the Qxf-values of the MBS glass (11 300 GHz) up to 16 500 GHz. The improvement of the Qxf-values became the most evident at 1050 °C. Dense MBS glass-ceramics sintered at 850 ≤ T ≤ 950 °C exhibited Qxf-values of 5000-8000 GHz (at ∼12 GHz), which are comparable with the values of CaO-B2O3-SiO2-based glass-ceramics.  相似文献   

2.
The crystallization behavior and mechanical characterization of glasses based upon the compositions along diopside (CaMgSi2O6)-jadeite (NaAlSi2O6) join has been investigated. Six glasses were obtained by the melt-quenching technique. Structural and thermal behaviors of these glasses were investigated by density and molar volume, infrared spectroscopy (FTIR) and dilatometry. The crystallization behavior of glasses was investigated by using differential scanning calorimetry (DSC). Sintering and crystallization behavior of the glass-ceramics were investigated under non-isothermal heating conditions up to temperatures of 850 °C. Mechanical characterization of glasses was investigated by using the measurement of Vickers indentation hardness and elastic constants such as Young's modulus (E), shear modulus (G), bulk modulus (K) and Poisson's ratio (ν). These data of the glasses were correlated with the structure of glasses, nature and role played by glass forming cations.  相似文献   

3.
Spherical shape borate-based bioactive glass powders with fine size were directly prepared by high temperature spray pyrolysis. The powders prepared at temperatures between 1200 and 1400 °C had mixed phase with small amounts of fine crystal and an amorphous rich phase. Glass powders with amorphous phase were prepared at a temperature of 1500 °C. The mean size of the glass powders prepared by spray pyrolysis was 0.76 μm. The glass powders prepared at a temperature of 1200 °C had two distinct exothermic peaks (Tc1 and Tc2) at temperatures of 588 and 695 °C indicating crystallization. The glass transition temperature (Tg) of the powders prepared at a temperature of 1200 °C was 480 °C. Phase-separated crystalline phases with spherical shape were observed from the surface of the pellet sintered at a temperature of 550 °C. Crystallization of the pellet was completely occurred at temperatures of 750 and 800 °C. The pellets sintered at temperatures below 700 °C had single crystalline phase of CaNa3B5O10. The pellet sintered at a temperature of 800 °C had two crystalline phases of CaNa3B5O10 and CaB2O4.  相似文献   

4.
R.T. Tol 《Polymer》2005,46(9):2955-2965
Crystallization kinetics and crystallinity development of PA6 droplets having sizes from 0.1 to 20 μm dispersed in immiscible uncompatibilized PS/PA6 and reactively compatibilized (PS/Styrene-maleic anhydride copolymer=SMA2)/PA6 blends are reported. These blend systems show fractionated crystallization, leading to several separate crystallization events at different lowered temperatures. Isothermal DSC experiments show that micrometer-sized PA6 droplets crystallizing in an intermediate temperature range (Tc∼175 °C) below the bulk crystallization show a different dependency on cooling rate compared to bulk crystallization, and an athermal crystallization mechanism is suggested for PA6 in this crystallization temperature region. The crystallinity in these blends decreases with PA6 droplet size. Random nucleation, characteristic for a homogeneous nucleation process, is found for sub-micrometer sized PA6 droplets crystallizing between Tc 85 and 110 °C using isothermal DSC experiments. However, crystallization in the PA6 droplets is most likely initiated at the PA6-PS interface due to vitrification of the PS matrix during crystallization. Very imperfect PA6 crystals are formed in this low temperature crystallization region, leading to a strongly reduced crystallinity. These crystals show strong reorganization effects upon heating.  相似文献   

5.
Thermal transitions of PEN, such as the glass transition temperature and those occurring during isothermal or nonisothermal crystallization were investigated based on careful experiments and modeling with isoconversional methods. The latter was applied to DSC data to determine the effective activation energy for the glass transition in PEN. Using the same data and different thermal methods the dynamic fragility of PEN was evaluated. The Lauritzen-Hoffman (LH) parameters Kg and U were estimated using the secondary nucleation theory from both PLM and isothermal DSC after self-nucleation measurements. Regime II to I and III to II transition at about 253 °C and 243 °C were concluded. Elliptical-shaped hedrite-like morphology was observed above 253 °C. Finally, isoconversional analysis was applied to both melt and glass non-isothermal crystallization data and the combined set of activation energies was found to be described by the theoretical Vyazovkin-Sbirrazzuoli equation using a single set of LH parameters coming from PLM measurements.  相似文献   

6.
In this paper, waterborne epoxy acrylate (EA) coating modified with methylacryloylpropyl polyhedral oligomeric silsesquioxanes (MAP-POSS) was prepared. The cure kinetics of the coating was investigated by differential scanning calorimetry (DSC). The curing process, thermal and mechanical properties of the coating were investigated by FTIR, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). These results show that the non-isothermal curing process can be described by Kissinger method and a two-parameter autocatalytic Šesták–Berggren (S–B) model. The kinetic equations of curing reaction were obtained. The UV-curing property of MAP-POSS/EA nanocomposite coating is better than that of pure epoxy acrylate system. The glass transition temperature (Tg) increases with increasing MAP-POSS content. When MAP-POSS content is 12 wt%, the Tg reaches the maximum 54.3 °C which is 9.5 °C higher than that of pure epoxy acrylate.  相似文献   

7.
Li2O–Al2O3–SiO2 glass with CaO, MgO and TiO2 additive were investigated. With more CaO + MgO addition, the crystallization temperature (Tp) and the value of Avrami constant (n) decreased, the activation energy (E) increased. The mechanism of crystallization of the glass ceramics changed from bulk crystallization to surface crystallization. With more TiO2 addition, the crystallization temperature decreased, E and n had a little change. The crystallization of the glass ceramics changed from surface crystallization to two-dimensional crystallization. Plate-like, high mechanical properties spodumene-diopside glass ceramics were obtained. The mechanical properties related with crystallization and morphology of glass ceramics.  相似文献   

8.
TiO2 based ceramic/glass composites were prepared by a non-reactive liquid phase sintering (NLPS) using zinc borosilicate (ZBS) glass having the deformation temperature of 588 °C. The compounds of Zn2SiO4 and Zn4B6O13 were formed after the sintering process, indicating that the ZBS glass was a non-reactive one in this system. For TiO2/50 vol% ZBS glass composite, the two-stage sintering behavior was conducted as the sintering temperature increased. The former might be correlated to the NLPS process and the latter appeared to be related to the crystallization. The dielectric constant (?r) was mainly affected by the porosity and obeyed the logarithmic mixing rule. The quality factor (Q × f0) showed an increase and then a steep decrease after the maximum at 850 °C. TiO2/50 vol% ZBS glass composite sintered at 900 °C demonstrated 36 in the dielectric constant (?r) and 7500 GHz in the quality factor (Q × f0) for an application to LTCC filters.  相似文献   

9.
To more accurately investigate the nucleation, crystallization and dispersion behaviors of silica particles in polymers, the composites of PET with monodisperse SiO2-PS core-shell structured particles were prepared with SiO2 size from 380 nm to 35 nm.For these SNPET samples, DSC results showed that the nucleation rate of silica particles increased as their size decreased, in which 35 nm SiO2 particles produced the most obvious nucleation effect. At 2.0 wt.% load of 35 nm silica, Avrami equation proved that the isothermal crystallization rate G of SNPET was ca. 30% higher than that of pure PET and the crystallization activation energy for SNPET was −218.7 kJ mol−1 lower than −196.1 kJ mol−1 for PET. While, the non-isothermal crystallization ΔE for SNPET was −199.8 kJ mol−1 lower than −185.5 for PET.On non-isothermal crystallization, Jeziorny equation presented the primary and secondary crystallization stages in PET and SNPET, in which nano SiO2 accelerated the crystallization rate. Their Ozawa number m was from 2.1 to 2.7, which was smaller than that of Avrami number n.The nucleation and dispersion behaviors of SiO2 particles were directly observed. POM results demonstrated that SNPET samples crystallized more quickly from melt and their crystallization rate increased as silica load increases but accelerated at 2-3 wt.%. The spherulites grew well in PET but their size was smaller in SNPET due to the silica barrier on their growth. SEM and TEM observed the homogeneous silica dispersion morphology and the vivid ordered patterns formed in SNPET. The monodisperse particles are highly expected to give more accurate and valuable references than multi-scale ones in obtaining novel advanced PET composites.  相似文献   

10.
The influence of Al2O3 (8 wt.%) on sintering and crystallization features of glass powders based on magnesium silicate (MgSiO3) was experimentally determined. The investigated compositions were Y0.125Mg0.875Si0.875B0.125O3 and Y0.125Mg0.725Ba0.15Si0.875B0.125O3. For the experiments, glasses in bulk and frit forms were produced by melting in Pt-crucible at 1600 °C for 1.5 h. Glass-powder compacts were sintered at different temperatures between 900 °C and 1100 °C. The evolution of crystalline regime was determined by in situ recording of X-ray diffractograms of fine glass powders at elevated temperatures. The results and their discussion showed that addition of 8 wt.% Al2O3 in glass batches affected the thermal properties of the glasses and resulted in MgSiO3-based glass ceramics well sintered between 900 °C and 1100 °C. In the BaO-free MgSiO3 glass ceramics, clino- and orthoenstatite crystallize while the presence of BaO favours the formation of hexacelsian.  相似文献   

11.
On the basis of our studies it results that dielectric properties of BaBi2Nb2O9 ceramics are sensitive to axial pressure applied. The pressure causes an increase of dispersion in the real part of dielectric permittivity ?′(T,f) and a rise in the temperature Tm at which the maximum in ?′(T,f) dependence occurs. The applied pressure induces in the ?′(T) dependence an additional step-like anomaly, which appears at the temperature TA < Tm. The applied pressure shifts both Tm and TA at the same rate, i.e. dTA/dX = dTm/dX = +14 °C/kbar at high axial pressure range, above the threshold pressure Xthresh. The Vogel–Fulcher relationship is employed to determine the axial pressure influence on relaxor properties of BBN ceramics. The simulated order parameter q takes non-zero values below Burn‘s temperature TB, where the polar clusters appear on cooling. For pressures higher than 0.8 kbar, the TB changes at the rate dTB/dX = −200 °C/kbar. The decrease in the difference between Burn's TB and the freezing Tf temperatures induced by the applied axial pressure is observed. This could be ascribed to the narrowing of temperature range of relaxor behavior.  相似文献   

12.
Copolyester was synthesized and characterized as having 94.4 mol% ethylene succinate units and 5.6 mol% trimethylene succinate units in a random sequence as revealed by NMR. Differential scanning calorimeter (DSC) was used to investigate the isothermal crystallization kinetics of this copolyester in the temperature range (Tc) from 30 to 80 °C. The melting behavior after isothermal crystallization was studied by using DSC and temperature modulated DSC (TMDSC) by varying the Tc, the heating rate and the crystallization time. DSC and TMDSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are primarily due to the melting of lamellar crystals with different stabilities. A small exothermic curve between the main melting peaks gives a direct evidence of recrystallization. As the Tc increases, the contribution of recrystallization gradually decreases and finally disappears. The Hoffman-Weeks linear plot gave an equilibrium melting temperature of 108.3 °C. The kinetic analysis of the spherulitic growth rates indicated that a regime II → III transition occurred at ∼65 °C.  相似文献   

13.
A copolyester was characterized to have 91 mol% trimethylene terephthalate unit and 9 mol% ethylene terephthalate unit in a random sequence by using 13C NMR. Differential scanning calorimeter (DSC) was used to investigate the isothermal crystallization kinetics in the temperature range (Tc) from 180 to 207 °C. The melting behavior after isothermal crystallization was studied by using DSC and temperature modulated DSC (TMDSC). The exothermic behavior in the DSC and TMDSC curves gives a direct evidence of recrystallization. No exothermic flow and fused double melting peaks at Tc = 204 °C support the mechanism of different morphologies. The Hoffman-Weeks linear plot gave an equilibrium melting temperature of 236.3 °C. The kinetic analysis of the growth rates of spherulites and the morphology change from regular to banded spherulites indicated that there existed a regime II → III transition at 196 °C.  相似文献   

14.
Kai C. Yen 《Polymer》2009,50(2):662-98
Polymorphism and its influential factors in poly(heptamethylene terephthalate) (PHepT) were probed using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and wide angle X-ray diffraction (WAXD). PHepT exhibits two crystal types (α and β) upon crystallization at various isothermal melt-crystallization temperatures (Tcs) by quenching from different Tmaxs (maximum temperature above Tm for melting the original crystals). Melt-crystallized PHepT with either initial α- or β-crystal by quenching from Tmax lower than 110 °C leads to higher fractions of α-crystal, but crystallization from Tmax higher than 140 °C leads to higher fractions of β-crystal. In addition to Tmax, polymorphism in PHepT is also influenced by crystallization temperature (Tc = 25-75 °C). When PHepT is melt-crystallized from a high Tmax = 150 °C (completely isotropic melt), it shows solely β crystal for higher Tc, and solely the α-crystal for Tc < 25 °C; in-between Tc = 25 and 35 °C, mixed fractions of both α- and β-crystals. However, by contrast, when PHepT is melt-crystallized from a lower Tmax = 110 °C, it shows α-crystal only at all Tcs, high or low.  相似文献   

15.
Bo Yin 《Polymer》2006,47(25):8237-8240
The enhanced crystallization of polycarbonate in the blend of liquid crystalline polymer/polycarbonate/(ethylene-methyl acrylate-glycidyl methacrylate) copolymer (LCP/PC/E-MA-GMA) was studied by wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The LCP/PC/E-MA-GMA 5/95/5 blends annealed at 200 °C, for 2, 4, 6, and 10 h, present an obvious crystalline structure corresponding to PC crystallization. The PC crystal obtained shows two melting temperature, Tm1 of about 214 °C and Tm2 of about 231 °C, with a total heat of fusion of 29 J/g (annealing time = 10 h). The preliminary results indicate that amorphous PC can be induced to crystallization by the synergistic action of LCP dispersed phase and reactive compatibilizer.  相似文献   

16.
The thin films of a symmetric crystalline-coil diblock copolymer of poly(l-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (TgPLLA), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (Tc), the glass transition temperature of PS (TgPS), the peak melting point of PLLA crystals (TmPLLA), and the end melting point of PLLA crystals (Tm,endPLLA). When annealed at (Tc=) 80 °C (Tc < TgPS < TODT, order-disorder transition temperature), 123 °C (TgPS < Tc < TmPLLA < TODT), 165 °C (TgPS < TmPLLA < Tc < Tm,endPLLA < TODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced. The PLLA crystallization between PS layers was hypothesized to account for the lamella reorientation during annealing. The crystallization, chain conformation, and possible chain folding mechanisms were discussed, based on detailed analysis of the lamellar structure before and after crystallization.  相似文献   

17.
He Huang  Lixia Gu 《Polymer》2006,47(11):3935-3945
A study has been made of the non-isothermal crystallization behavior and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol) with 80% degree of saponification (PVA80). Possible sample degradation was first investigated, but no significant degradation or dehydration was detected using FTIR and DSC under the experimental condition. The non-isothermal crystallization of PVA80 was analyzed with Ozawa equation, and the Mo method of combining Ozawa and Avrami equations. Ozawa equation was only applicable in a narrow temperature range from 80 to 100 °C. The deviation from the Ozawa equation is not due to the secondary crystallization or the quasi-isothermal nature of the treatment. It is only a result of the large relative difference of the relative crystallinity values under different cooling rates. The Mo method demonstrated a success in the full temperature range investigated. The isoconversional method developed by Friedman failed to estimate the activation energy for this non-isothermal crystallization. Thermal transitions of PVA80 are associated with its complex hydrogen-bonding interactions. The melt-crystallized PVA80 sample, as that from film casting, followed by annealing at 60 and 80 °C, has a broad melting temperature range measured by DSC and FTIR. It was found that the melting behavior of a semicrystalline polymer can be probed via a non-crystalline hydrogen-bonded CO band using FTIR. The glass transition temperature Tg of PVA80 was raised about 20 °C, after the sample was melt-crystallized. The intensity of the hydrogen-bonded CO band increases when temperature was increased from 110 to 180 °C, due to the promoted hydrogen-bonding interactions between the CO groups in the amorphous phase and the hydroxyl groups from the crystalline phase, which is also the main reason for the increased Tg transition.  相似文献   

18.
The structure and properties of highly stereoregular isotactic poly(methyl methacrylate) (it-PMMA) and syndiotactic poly(methyl methacrylate) (st-PMMA) blends with crystalline stereocomplex formed by supercritical CO2 treatment at temperatures ranging from 35 to 130 °C were investigated by means of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and dynamic mechanical analysis (DMA) measurements. The melting temperature, Tm, and the heat of fusion, ΔHm, had maximum values at about 200 °C and 25 J/g, respectively. The degree of crystallinity evaluated by WAXD ranged in value from 32 to 38%. The fringed-micellar stereocomplex crystallites were formed in case of treatment temperatures below 90 °C, and the orderliness perpendicular to the helix axis of the fringed-micellar crystallites was considered to be increased with increasing treatment temperature. In case of treatment temperature of 130 °C, the fringed-micellar crystallites and the lamellar crystallites with high orderliness parallel to the helix axis coupled with the perpendicular orderliness were formed, and the respective double endothermic peaks, Tm1 and Tm3, were observed in DSC due to the melting of the two kinds of stereocomplex crystallites. The it-PMMA/st-PMMA blends containing the fringed-micellar crystallites maintained high values of storage modulus, E′, up to higher temperature compared with the amorphous blends. The E′ of the blend treated with CO2 at 130 °C decreased twice at temperatures corresponding to Tm1 and Tm3.  相似文献   

19.
Lithium-deficient LiYMn2O4 spinels (LD-LiYMn2O4) with nominal composition (0.9 ≤ Y < 1) have been synthesized by melt impregnation from Mn2O3 and LiNO3 at temperatures ranging from 700 °C to 850 °C. X-ray diffraction data show that LD-LiYMn2O4 spinels are obtained as single phases in the range Y = 0.975-1 at 700 °C and 750 °C. Morphological characterization by transmission electron microscopy shows that the particle size of LD-LiYMn2O4 spinels increases on decreasing the Li-content. The influence of the Li-content and the synthesis temperature on the thermal and electrochemical behaviours has been systematically studied. Thermal analysis studies indicate that the temperature of the first thermal effect in the differential thermal analysis (DTA)/thermogravimetric (TG) curves, TC1, linearly increases on decreasing the Li-content. The electrochemical properties of LD-LiYMn2O4 spinels, determined by galvanostatic cycling, notably change with the synthesis conditions. So, the first discharge capacity, Qdisch., at C rate increases on rising the Li-content and the synthesis temperature. The sample Li0.975Mn2O4 synthesized at 700 °C has a Qdisch. = 123 mAh g−1 and a capacity retention of 99.77% per cycle. This LD-LiYMn2O4 sample had the best electrochemical characteristics of the series.  相似文献   

20.
M-type strontium hexaferrite was prepared by mechanosynthesis using high-energy ball milling. The influence of milling parameters, hematite excess and annealing temperature on magnetic properties of SrFe12O19 were investigated. Commercial iron and strontium oxides were used as starting materials. It was found that mechanical milling followed by an annealing treatment at low temperature (700 °C) promotes the complete structural transformation to Sr-hexaferrite phase. For samples annealed at temperatures from 700 to 1000 °C, saturation magnetization values (Ms) are more sensitive to annealing temperature than coercivity values (Hc). The maximum Ms of 60 emu/g and Hc of 5.2 kOe were obtained in mixtures of powders milled for 5 h and subsequently annealed at 700 °C. An increase in the annealing temperature produces negligible changes in magnetic saturation and coercivity. An excess of hematite as a second phase produces a slight decrease in the saturation magnetization but leads to a significant increase in coercive field, reaching 6.6 kOe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号