共查询到20条相似文献,搜索用时 15 毫秒
1.
K. RajeswariM. Buchi Suresh U.S. HareeshY. Srinivasa Rao Dibakar DasRoy Johnson 《Ceramics International》2011,37(8):3557-3564
Densification studies of 8 mol% yttria stabilized zirconia ceramics were carried out by employing the sintering techniques of conventional ramp and hold (CRH), spark plasma sintering (SPS), microwave sintering (MWS) and two-stage sintering (TSS). Sintering parameters were optimized for the above techniques to achieve a sintered density of >99% TD. Microstructure evaluation and grain size analysis indicated substantial variation in grain sizes, ranging from 4.67 μm to 1.16 μm, based on the sintering methodologies employed. Further, sample was also sintered by SPS technique at 1425 °C and grains were intentionally grown to 8.8 μm in order to elucidate the effect of grain size on the ionic conductivity. Impedance spectroscopy was used to determine the grain and grain boundary conductivities of the above specimens in the temperature range of RT to 800 °C. Highest conductivity of 0.134 S/cm was exhibited by SPS sample having an average grain size of 1.16 μm and a decrease in conductivity to 0.104 S/cm was observed for SPS sample with a grain size of 8.8 μm. Ionic conductivity of all other samples sintered vide the techniques of TSS, CRH and MWS samples was found to be ∼0.09 S/cm. Highest conductivity irrespective of the grain size of SPS sintered samples, can be attributed to the low densification temperature of 1325 °C as compared to other sintering techniques which necessitated high temperatures of ∼1500 °C. The exposure to high temperatures while sintering with TSS, CRH and MWS resulted into yttria segregation leading to the depletion of yttria content in fully stabilized zirconia stoichiometry as evidenced by Energy Dispersive Spectroscopy (EDS) studies. 相似文献
2.
I. Gonzalo-Juan B. Ferrari M.T. Colomer 《Journal of the European Ceramic Society》2009,29(15):3185-3195
The effect of the urea content, under mild and dilute conditions, on the extension of the YSZ hydrothermal reaction, on the crystalline zirconia phases obtained and, on its primary particle size has been studied. The key role of the urea as a dispersant agent for the synthesized YSZ nanoparticles has also been investigated in terms of particle size distribution and zeta potential. The latest study has been performed in the post-reaction medium. Pure nanocrystalline YSZ is obtained when a basic pH (10) is achieved during the synthesis. In addition, the urea is protonated at 5 < pH < 7 in the post-reaction medium and it allows its specific adsorption on the surface of the particles by electrostatic and steric mechanisms, keeping a stable suspension. In those conditions, the measured average particle size is 20 nm and the agglomeration factor (Fag) is 2. However, by HR-TEM particles with a size even less than 5 nm are observed. 相似文献
3.
The previous report of this work has demonstrated the fabrication and properties of porous yttria-stabilized zirconia (YSZ) ceramics with unidirectionally aligned pore channels. As a follow-up study, the present work aims at lowering the thermal conductivity of the porous YSZ ceramics by silica aerogels impregnation. The porous YSZ ceramics were immersed in an about-to-gel silica sol. Both the unidirectionally aligned pore channels and the inter-grain pores by grain stacking in the channel-pore wall of the porous YSZ ceramics were impregnated with the silica sol. After aging and supercritical drying, silica aerogels formed in the macroporous network of the porous YSZ ceramics with unidirectionally aligned pore channels. The influences of silica aerogel impregnation on the microstructure and properties of porous YSZ ceramics with unidirectional aligned pore channels were investigated. The porosity decreased after impregnation with silica aerogels. Both microstructure observation and pore size distribution indicated that both channel-pore size and inter-grain pore-size decreased significantly after impregnation with silica aerogels. Impregnating porous YSZ ceramics with silica aerogels remarkably lowered the room-temperature thermal conductivity and enhanced the compressive strength. The as-fabricated materials are thus suitable for applications in bulk thermal isolators. 相似文献
4.
Thick (∼1.2 mm) thermal barrier coatings (TBCs) consisting of YSZ were deposited by plasma spraying. Spraying parameters were varied in a controlled manner to produce different microstructures. The effect of substrate temperature on the microstructural features and subsequently on the Young's modulus was investigated. In addition, the residual stresses in the coatings were estimated using a numerical model and they were related to the microstructural features observed. Results showed that crack segmentation density, residual stresses in the coatings and thus coating properties are strongly affected not only by the average substrate temperature during spraying but also the variations between the minimum and maximum substrate temperature. 相似文献
5.
Tim Van Gestel Doris SeboldHans Peter Buchkremer Detlev Stöver 《Journal of the European Ceramic Society》2012,32(1):9-26
The application of a thin film electrolyte layer with a thickness in the micrometer range could greatly improve current solid oxide fuel cells (SOFCs) in terms of operating temperature and power output. Since the achievable minimal layer thickness with conventional powder coating methods is limited to ∼5 μm, a variety of thin film methods have been studied, but results on regular large-scale anode substrates are still lacking in the literature. In this paper, a wet coating process is presented for fabricating gas-tight 1-2 μm thick 8YSZ electrolyte layers on a regular NiO/8YSZ substrate, with a rough surface, a high porosity and a large pore size. These layers were deposited in a similar way as conventional suspension based layers, but the essential difference includes the use of coating liquids (nano-dispersion, sol) with a considerably smaller particle size (85 nm, 60 nm, 35 nm, 6 nm). Successful deposition of such layers was accomplished by means of an innovative coating process, which involves the preparation of a hybrid polyvinyl alcohol/8YSZ membrane by dip-coating or spin-coating and subsequently burning out the polymer part at 500 °C. Results from He leak tests confirmed that the sintered layers posses a very low number of defects and with values in the range 10−4-10−6 (hPa dm3)/(s cm2) the gas-tightness of the thin film layers is satisfactory for fuel cell operation. Moreover, preliminary results have also indicated a potential reduction of the sintering temperature from 1400 °C to the range 1200-1300 °C, using the presented coating process. 相似文献
6.
Dorian Hanaor Marco Michelazzi Jeremy Chenu Cristina Leonelli Charles C. Sorrell 《Journal of the European Ceramic Society》2011,31(15):2877-2885
Thick anatase films were fabricated on graphite substrates using a method of anodic aqueous electrophoretic-deposition using oxalic acid as a dispersant. Thick films were subsequently fired in air and in nitrogen at a range of temperatures. The morphology and phase composition were assessed and the photocatalytic performance was examined by the inactivation of Escherichia coli in water. It was found that the transformation of anatase to rutile is enhanced by the presence of a graphite substrate through reduction effects. The use of a nitrogen atmosphere allows higher firing temperatures, results in less cracking of the films and yields superior bactericidal performance in comparison with firing in air. The beneficial effects of a nitrogen firing atmosphere on the photocatalytic performance of the material are likely to be a result of the diffusion of nitrogen and carbon into the TiO2 lattice and the consequent creation of new valence band states. 相似文献
7.
Porous yttria-stabilized zirconia (YSZ) ceramics were fabricated by tert-butyl alcohol (TBA)-based gel-casting method for potential applications in heat-insulation materials. The effect of sintering temperature on compressive strength of porous YSZ ceramics was investigated on the basis of measurements linear shrinkage, porosity and pore size. As the sintering temperature increased from 1350 to 1550 °C, a decrease of porosity from 77 to 65%, a decrease of average pore size from and an increase of linear shrinkage from 15.4 to 31.8% were observed. The compressive strength increased remarkably from 3 to 27 MPa with increasing sintering temperature from 1350 to 1550 °C, which was related to the corresponding change of linear shrinkage, porosity, pore size and microstructure. A remarkable decrease of compressive strength with increasing porosity was observed. The compressive strength decreased also with increasing pore size. 相似文献
8.
Plasma-sprayed yttria-stabilized zirconia (YSZ) coating has been considered to be a good protective coating material for high-temperature applications on account of its superior properties and life cycle costs. However, thermal barrier coatings (TBCs) have engineering reliability problems in tailoring the microstructure and mechanical properties towards achieving both prime reliance and manufacturing reproducibility. In this work, empirical relationships were developed to estimate TBCs performance characteristics (porosity and microhardness) by incorporating independently controllable atmospheric plasma spray operational parameters (input power, standoff distance and powder feed rate) using the response surface methodology (RSM). A central composite rotatable design with three factors and five levels was chosen to minimize the number of experimental conditions. Within the scope of the design space, the input power and the standoff distance appeared to be the most significant two parameters affecting the coating quality characteristics among the three investigated process parameters. Further, correlating the spray parameters with coating properties enables the identification of characteristics regime to achieve desired quality of YSZ coatings. 相似文献
9.
Edson Cezar Grzebielucka Adriana Scoton Antonio Chinelatto Sergio Mazurek Tebcherani Adilson Luiz Chinelatto 《Ceramics International》2010
Yttria-tetragonal zirconia polycrystal (ZrO2 + 4.5 mol% Y2O3) nanocrystalline powder was synthesized by two Pechini-type gel routes, the in situ polymerized complex (IPC) method and the PEG/AF method. FTIR spectra confirmed coordination of metal ions with the polymer by different routes, depending on the method used. The crystallite size of the powder increased from 5 nm to 8 nm when the temperature was increased from 450 °C to 600 °C and calcination times increased from 2 h to 24 h. The morphology of the powders differed only when the organic impurities were not completely eliminated. After calcination, the morphology of the powders produced by the two methods showed porous agglomerates composed of smaller particles. All the resulting microstructures were very similar, regardless of the method employed to obtain the powder or the calcination times and temperatures. 相似文献
10.
《Ceramics International》2016,42(7):8005-8009
Slip-cast ceramic samples of the system (100−x) (ZrO2–3.5 mol% Y2O3)–xAl2O3 (abridged as (100−x) 3.5 YSZ/xAl2O3 composite, where x is expressed in wt%) were examined using dilatometry, isothermal sintering and electron microscopy methods. The shrinkage in the range 1100–1300 °C was found to be higher for the (100−x) 3.5 YSZ/xAl2O3 samples with prevailing fraction of PSZ than for the composites with a corundum matrix. When the weight fraction of corundum was increased, the relative shrinkage of the (100−x) 3.5 YSZ/xAl2O3 samples decreased and the open porosity of the ceramic materials grew. The effect of <gamma>-Al2O3 impurity on the sintering process and linear dimensions of ceramics is shown. Heat treatment of (50–40) 3.5 YSZ/(50–60) Al2O3 composites at 1300 °C are proposed as the optimum conditions for porous diaphragm formation. 相似文献
11.
Surface modification with cerium oxide of tetragonal zirconia polycrystals stabilized with 3 mol.% yttria (3Y-TZP) was carried out in order to improve the resistance to low temperature degradation. Specimens were coated with pressed CeO2 powder and then annealed at 1400 °C and 1500 °C for periods of up to 10 h. Similar treatments were performed in specimens coated with a sub-micron CeO2 layer by means of magnetron sputtering. Cerium penetration in the surface modified specimens is about 10 μm into the bulk and the grain size increases in the surface layer affected by cerium diffusion. The indentation bulk fracture toughness and Vickers hardness are not affected by the surface modification treatments. Berkovich nanoindentation was performed to observe the contact hardness and elastic modulus at the surface, showing no significant difference after surface modification. Surface modification with ceria induces a large increase in the resistance to hydrothermal ageing without impairing mechanical properties. 相似文献
12.
Amparo Borrell María Dolores SalvadorEmilio Rayón Felipe L. Peñaranda-Foix 《Ceramics International》2012,38(1):39-43
3 mol% Y2O3-stabilized zirconia nanopowders were fabricated using various sintering techniques; conventional sintering (CS) and non-conventional sintering such as microwave (MW) and pulsed electric current-assisted-sintering (PECS) at 1300 °C and 1400 °C. A considerable difference in the densification behaviour between conventional and non-conventional sintered specimens was observed. The MW materials attain a bulk density 99.4% theoretical density (t.d.) at 1300 °C, while the CS materials attain only 92.5% t.d. and PECS 98.7% t.d. Detailed microstructural evaluation indicated that a low temperature densification leading to finer grain sizes (135 nm) could be achieved by PECS followed by MW with an average sintered grain size of 188 nm and CS 225 nm. It is believed that the high heating rate and effective particle packing are responsible for the improvements in these properties. 相似文献
13.
Dorian Hanaor Marco MichelazziCristina Leonelli Charles C. Sorrell 《Journal of the European Ceramic Society》2012,32(1):235-244
The agglomeration, electrokinetic properties and electrophoretic deposition behaviour of aqueous suspensions of ZrO2 with carboxylic acid additives were studied in comparison with conventional pH adjustment. It was found that citric acid imparted negative zeta-potential values and electrosteric stabilisation to particles in suspensions at all pH levels. The examination of additions of carboxylic acids to ZrO2 suspensions revealed that these reagents cause a sharp drop in zeta-potential at distinct addition levels, which correspond to surface saturation of the particles with negatively charged carboxylate groups. Adsorption cross sections of citric acid, EDTA and oxalic acid were evaluated from these results, showing that both citric acid and EDTA coordinate to ZrO2 surfaces by two carboxylate groups while oxalic acid is coordinated by one group. The use of carboxylic acids was shown to facilitate superior electrophoretic deposition in comparison with zeta-potential modification by conventional pH adjustment through improved suspension stability. 相似文献
14.
R.M. BatistaE.N.S. Muccillo 《Ceramics International》2011,37(6):1929-1934
The effects of NiO addition on the structure and microstructure of yttria-stabilized zirconia were investigated to clarify the role of the additive in the microstructure-related electrical conductivity of the solid electrolyte. Specimens of 8 mol% yttria-stabilized zirconia with NiO contents up to 5.0 mol% were prepared using nickel oxide and trihydroxi nickel carbonate as precursors. The specimens were sintered at 1350 °C for several holding times. The evolution of the lattice parameter with NiO content was evaluated by X-ray diffraction and the microstructural features by scanning electron microscopy. Electrical conductivity was evaluated by impedance spectroscopy measurements. The solubility limit of NiO at 1350 °C was found to be 1.5 mol% by X-ray diffraction. Energy dispersive spectroscopy results revealed Ni segregation for large holding times at 1350 °C. The grain boundary conductivity was found to be influenced by Ni segregation and to decrease with increasing holding times at high temperature. 相似文献
15.
T. Chrska J. Hostomský M. Klementov J. Dubský 《Journal of the European Ceramic Society》2009,29(15):3159-3165
Crystallization kinetics of amorphous alumina–zirconia–silica ceramics was studied by nonisothermal differential scanning calorimetry (DSC). Different amorphous materials were produced by plasma spraying of near-eutectic Al2O3–ZrO2–SiO2 mixtures. Phase composition and microstructure of the amorphous materials and nanocrystalline products were analyzed. All of the investigated materials show an exothermic peak between 940 and 990 °C in the DSC experiments. The activation energies calculated from DSC traces decrease with increasing SiO2 concentration. Values of the Avrami coefficients together with results of the microstructural observations indicate that tetragonal zirconia crystallization from materials containing more than 10 wt.% SiO2 proceeds by a diffusion-controlled mechanism with nucleation occurring predominantly at the beginning of the process. In contrast, material with almost no SiO2 exhibited a value of the Avrami exponent consistent with the crystal growth governed by processes at the phase boundary. 相似文献
16.
《应用陶瓷进展》2013,112(1):20-24
AbstractAbstractLow temperature sintering of α‐Si3N4 matrix ceramics was developed in the present study using 4?wt‐%MgO together with Al2O3 or AlPO4 as the sintering additives and spark plasma sintering technique. The results suggested that α‐Si3N4 ceramics could be densified at low sintering temperature by adjusting both the sintering temperature and sintering additive content. For low temperature sintered α‐Si3N4 ceramics, using MgO and Al2O3 as the sintering additives, the densification is not complete at a temperature lower than 1600°C, and the mechanical strength is <200?MPa. When MgO and AlPO4 were used as the sintering additives, the increase in AlPO4 content not only declines the sintering temperature but also promotes the mechanical property of the sintered Si3N4 ceramics. It was the AlPO4 phosphate binder that played a significant role in low temperature sintering of Si3N4 ceramics. 相似文献
17.
Ilenia G. Tredici Filippo MagliaMonica Dapiaggi Giorgio SpinoloUmberto Anselmi-Tamburini 《Journal of the European Ceramic Society》2012,32(2):343-352
The densification of undoped zirconia nanopowder was performed using the High-Pressure Field Assisted Sintering technique, with the aim of preparing bulk size-stabilized tetragonal zirconia. The role played by the structural and microstructural properties of the starting powders on the characteristics of the sintered materials was investigated by exploring several different synthetic routes. Nanopowders prepared by solvothermal methods were proven to give the most satisfactory results thanks to their microstructure, particularly characterized by uniform spherical microaggregates. Using solvothermally synthesized powder as a starting material, nearly fully dense (97% relative density) samples of undoped size-stabilized tetragonal zirconia were obtained with a sintering cycle of 5 min under a uniaxial pressure of 700 MPa, at sintering temperatures as low as 900 °C. 相似文献
18.
The search for optimal materials and the utilization of proper manufacturing techniques to replace conventional electrolytes are our research objectives for the operation of solid oxide fuel cells under intermediate temperatures. Furthermore, understanding the effects of process parameters will be helpful for obtaining suitable materials for applications. In this study, we investigate the O2/Ar flow ratio effect by employing RF reactive sputtering to fabricate 20 mol% Gd-doped ceria (20GDC) films on alumina substrates. The morphology of films was aggregated by nano-scale size of grains which gradually reduced in size from lower to higher O2/Ar flow ratios. The microstructure of films was transferred from incomplete oxidized materials to well-crystallized cubic fluorite structures using an increased O2/Ar flow ratio up to 0.30. The oxygen/metal ratio of films was increased gradually and saturated around 2.05 for O2/Ar flow ratios over 0.25 and remained in uniform composition through whole films for each flow ratios. 相似文献
19.
20.
Improved densification during the conventional sintering of KNbO3 ceramics was achieved by using small additions of TiO2. This improved densification can be explained on the basis of high-temperature chemical reactions in the system. X-ray diffractometry and electron microscopy were used in combination with diffusion-couple experiments in order to elucidate the chemical reactions between KNbO3 and TiO2. TiO2 reacts with KNbO3 forming KNbTiO5, and a low concentration of Ti incorporates in the KNbO3 structure resulting in the formation of oxygen vacancies and, consequently, in an improvement in the densification. At ∼1037 °C eutectic melting between the KNbO3 and the KNbTiO5 further improves the densification of the KNbO3 ceramics. 相似文献