首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PEI was used as dispersant for ZrB2 and SiC powders in water. The dispersion behavior of ZrB2 and SiC in water was studied by zeta potential measurements, particle size distribution measurements and interparticle interaction calculations. Well-dispersed ZrB2 and SiC aqueous suspensions were obtained using 0.6 wt% PEI at pH 6. The rheological behavior of ZrB2–SiC aqueous suspensions was also investigated. Finally, a high solid loading (52 vol%), low viscosity (980 mPa s at 100 s−1) ZrB2–SiC aqueous suspension was successfully prepared.  相似文献   

2.
Mullite-based multilayered structures have been suggested as promising environmental barrier coatings for Si3N4 and SiC ceramics. Mullite has been used as bottom layer because its thermal expansion coefficient closely matches those of the Si-based substrates, whereas Y–ZrO2 has been tried as top layer due to its stability in combustion environments. In addition, mullite/ZrO2 compositions may work as middle layers to reduce the thermal expansion coefficient mismatch between the ZrO2 and mullite layers. Present work studies the thermal behaviour of a flame sprayed mullite/ZrO2 (75/25, v/v) composite coating. The changes in crystallinity, microstructure and thermal conductivity of free-standing coatings heat treated at two different temperatures (1000 and 1300 °C) are comparatively discussed. The as-sprayed and 1000 °C treated coatings showed an almost constant thermal conductivity (K) of 1.5 W m−1 K−1. The K of the 1300 °C treated specimen increased up to twice due to the extensive mullite crystallization without any cracking.  相似文献   

3.
To improve the oxidation protective ability of carbon/carbon composites, ZrB2–SiC gradient coating was prepared on the surface of C/C composites by an in-situ reaction method. The ZrB2–SiC gradient coating consisted of an inner ZrB2–SiC layer and an outer ZrB2–SiC–Si coating. The phase composition and microstructures of the multiphase coating were characterized by XRD, EDS and SEM. Results showed that the inner coating is mainly composed of ZrB2 and SiC, while the outer multiphase coating is composed of ZrB2, SiC and Si. The multilayer coating is about 200 μm in thickness, which has no penetration crack or big hole. The oxidation behavior of the coated C/C composites at 1773 K in air was investigated. Results show that the gradient ZrB2–SiC oxidation protective coating could protect C/C from oxidation for 207 h with only (4.56±1.2)×10−3 g/cm2 weight loss, owing to the compound silicate glass layer with the existence of thermally stable phase ZrSiO4.  相似文献   

4.
《Ceramics International》2023,49(2):1700-1709
Carbon fiber-reinforced silicon carbide (C/SiC) composites are important candidates for laser protection materials. In this study, ablation mechanism of C/SiC coated with ZrO2/Mo and ZrB2–SiC/ZrO2/Mo under laser irradiation was studied. ZrB2–SiC multiphase ceramic and ZrO2 ceramic were successfully coated on C/SiC composite by atmospheric plasma spraying technology with Mo as transition layer. Phase evolution and morphology of composite were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Moreover, ablation behavior of the composite was investigated by laser confocal microscopy. Results showed that ablation mechanism of C/SiC composite was controlled by phase transformation, thermal reaction, and thermal diffusion, with solid–liquid transition of ZrB2 and ZrO2 being dominant factor. Endothermic reaction and good thermal diffusivity of coatings were also important factors affecting ablation performance. Reflectivity effect of ZrO2 coating was limited under high-energy laser irradiation. Compared with ZrO2/Mo single-phase-monolayer coating, designed ZrB2–SiC/ZrO2/Mo coating showed better ablation performance, and breakdown time of C/SiC increased from 10 to 40 s. The depletion of liquid phase in molten pool was identified as an important factor responsible for rapid failure of C/SiC. The coating failed when the entire liquid phase was consumed within molten pool, followed by rapid damage of C/SiC substrate. Results of this study can provide theoretical guidance and research ideas for design and application of laser protective materials.  相似文献   

5.
The effect of SiC content, additives, and process parameters on densification and structure–property relations of pressureless sintered ZrB2–(10–40 vol%) SiC particulate composites have been studied. The ZrB2–SiC composite powders mixed by ball-milling with 1.2 wt% C (added as phenolic resin) and 3 wt% B4C have been uniaxially cold-compacted and sintered in argon environment at 1950–2050 °C for 2 h, or at 2000 °C for durations between 1/2 and 3 h. The amount of densification is found to increase with sintering duration, and by prior holding at 1250 and 1600 °C for reduction of oxide impurities (ZrO2, B2O3 and SiO2) on powder particle surfaces by the aforementioned additives. Presence of SiC with average size smaller than that of ZrB2 appears to aid in densification by enhancing green density, increasing WC content by erosion of milling media, and inhibiting matrix grain growth. Both SiC and WC appear to aid in reduction of oxide impurities. Furthermore, the impurities enriched in W, Fe and Co obtained from milling media are found to be segregated at ZrB2 grain boundaries, and appear to assist in densification by forming liquid phase, which completely wets the ZrB2 grains. Hardness increases with SiC content or with sintering duration till 1 h, but decreases for periods ≥2 h due to grain growth. The experimentally measured elastic moduli approaches corresponding theoretically predicted values with increasing SiC content due to reduction in porosity.  相似文献   

6.
The oxidation behaviors of ZrB2‐ 30 vol% SiC composites were investigated at 1500°C in air and under reducing conditions with oxygen partial pressures of 104 and 10 ? 8 Pa, respectively. The oxidation of ZrB2 and SiC were analyzed using transmission electron microscopy (TEM). Due to kinetic difference of oxidation behavior, the three layers (surface silica‐rich layer, oxide layer, and unreacted layer) were observed over a wide area of specimen in air, while the two layers (oxide layer, and unreacted layer) were observed over a narrow area in specimen under reducing condition. In oxide layer, the ZrB2 was oxidized to ZrO2 accompanied by division into small grains and the shape was also changed from faceted to round. This layer also consisted of amorphous SiO2 with residual SiC and found dispersed in TEM. Based on TEM analysis of ZrB2 – SiC composites tested under air and low oxygen partial pressure, the ZrB2 begins to oxidize preferentially and the SiC remained without any changes at the interface between oxidized layer and unreacted layer.  相似文献   

7.
A novel reactive infiltration processing (RIP) technique was employed to infiltrate porous carbon fibre reinforced carbon (C/C) composite hollow tubes with ultra high temperature ceramic (UHTC) particles such as ZrB2. The C/C composite tubes had initial porosity of ∼60% with a bimodal (10 μm and 100 μm) pore size distribution. A slurry with 40-50% ZrB2 solid loading particles was used to infiltrate the C/C tubes. Our approach combines in situ ZrB2 formation with coating of fine ZrB2 particles on carbon fibre surfaces by a reactive processing method. A Zr and B containing diphasic gel was first prepared using inorganic-organic hybrid precursors of zirconium oxychloride (ZrOCl2·8H2O), boric acid, and phenolic resin as sources of zirconia, boron oxide, and carbon, respectively. Then commercially available ZrB2 powder was added to this diphasic gel and milled for 6 h. The resultant hybrid slurry was vacuum infiltrated into the porous hollow C/C tubes. The infiltrated tubes were dried and fired for 3 h at 1400 °C in flowing Ar atmosphere to form and coat ZrB2 on the carbon fibres in situ by carbothermal reaction. Microstructural observation of infiltrated porous C/C composites revealed carbon fibres coating with fine nanosized (∼100 nm) ZrB2 particles infiltrated to a depth exceeding 2 mm. Ultra high temperature ablation testing for 60 s at 2190 °C suggested formation of ZrO2 around the inner bore of the downstream surface.  相似文献   

8.
To improve the corrosion resistance of the carbon fiber reinforced magnesium matrix composites (Cf/Mg composites), ZrO2 and ZrB2-SiC/ZrO2 composite coatings were prepared by supersonic atmospheric plasma spraying (SAPS) on Cf/Mg composites. The microstructure and phase composition of the coatings before and after the corrosion test were investigated. Open circuit potential and potentiodynamic polarization tests were measured at room temperature. Results revealed that the corrosion current density (icorr) of the ZrO2 coated Cf/Mg composites decreased by one order while the ZrB2-SiC/ZrO2 coated Cf/Mg composites reduced by two orders. Compared with Cf/Mg composites, the corrosion potential (Ecorr) of the ZrO2 and ZrB2-SiC/ZrO2 coated Cf/Mg composites increased by 220.5?mV and 1021.8?mV respectively, indicating that the ZrB2-SiC/ZrO2 composite coatings greatly improve the corrosion resistance of Cf/Mg composites. The uniform distribution of the SiC particles with small grain size in ZrB2 is responsible for the densification of the coating. The ZrB2-SiC/ZrO2 composite coatings provide a barrier for the substrate to impede the entry of Cl- in the corrosion solution, thus exhibiting a better corrosion resistance than the ZrO2 coating.  相似文献   

9.
The high temperature compressive strength behavior of zirconium diboride (ZrB2)-silicon carbide (SiC) particulate composites containing either carbon powder or SCS-9a silicon carbide fibers was evaluated in air. Constant strain rate compression tests have been performed on these materials at room temperature, 1400, and 1550 °C. The degradation of the mechanical properties as a result of atmospheric air exposure at high temperatures has also been studied as a function of exposure time. The ZrB2-SiC material shows excellent strength of 3.1 ± 0.2 GPa at room temperature and 0.9 ± 0.1 GPa at 1400 °C when external defects are eliminated by surface finishing. The presence of C is detrimental to the compressive strength of the ZrB2-SiC-C material, as carbon burns out at high temperatures in air. As-fabricated SCS-9a SiC fiber reinforced ZrB2-SiC composites contain significant matrix microcracking due to residual thermal stresses, and show poor mechanical properties and oxidation resistance. After exposure to air at high temperatures an external SiO2 layer is formed, beneath which ZrB2 oxidizes to ZrO2. A significant reduction in room temperature strength occurs after 16-24 h of exposure to air at 1400 °C for the ZrB2-SiC material, while for the ZrB2-SiC-C composition this reduction is observed after less than 16 h. The thickness of the oxide layer was measured as a function of exposure time and temperatures and the details of oxidation process has been discussed.  相似文献   

10.
Rare‐earth modified ZrB2–SiC coatings were prepared via mechanical mixing Sm2O3 or Tm2O3 powders with spray‐dried ZrB2, or by chemically doping samarium ions into spray‐dried ZrB2. In either approach, SiC powders were also added and coatings were fabricated via shrouded air plasma spray. An oxyacetylene torch was utilized to evaluate the coatings under high heat flux conditions for hold times of 30 and 60 s. The resulting phases and microstructures were evaluated as a function of rare‐earth type, modification approach, and ablation time. A brittle m‐ZrO2 scale was observed in the ZrB2/SiC‐only coating after ablative tests; during cooling this scale detached from the unreacted coating. In contrast, rare‐earth modified coatings formed a protective oxide scale consisting primarily of either Sm0.2Zr0.8O1.9 or Tm0.2Zr0.8O1.9, along with small amount of m‐ZrO2. These rare‐earth oxide scales displayed high thermal stability and remained adhered to the unreacted coating during heating and cooling, offering additional oxidation protection.  相似文献   

11.
SiC-5 wt.% ZrB2 composite ceramics with 10 wt.% Al2O3 and Y2O3 as sintering aids were prepared by presureless liquid-phase sintering at temperature ranging from 1850 to 1950 °C. The effect of sintering temperature on phase composition, sintering behavior, microstructure and mechanical properties of SiC/ZrB2 ceramic was investigated. Main phases of SiC/ZrB2 composite ceramics are all 6H-SiC, 4H-SiC, ZrB2 and YAG. The grain size, densification and mechanical properties of the composite ceramic all increase with the increase of sintering temperatures. The values of flexural strength, hardness and fracture toughness were 565.70 MPa, 19.94 GPa and 6.68 MPa m1/2 at 1950 °C, respectively. The addition of ZrB2 proves to enhance the properties of SiC ceramic by crack deflection and bridging.  相似文献   

12.
C/SiC composites with different additives (ZrO2 and ZrB2) were fabricated by CVI and CVD and their oxidation and ablation properties at 1700–1800 °C were investigated. Two different ablation test conditions, dry air and air mixed with water vapor, are compared. The ablation test results are reviewed, the weight loss rates are presented and the corresponding micro-structures are investigated in detail. The results show that in dry air, the weight loss rate of C/SiC composites is greater than those with ZrO2 and ZrB2 additives. However, in air mixed with water vapor (5 wt%) to simulate the hygrothermal condition, the weight loss rates of these three composites all become relatively smaller. A model is proposed to predict the weight loss of C/SiC composites and it agrees well with the experimental data.  相似文献   

13.
《Ceramics International》2022,48(6):8155-8168
In the present study, the effect of oxy-acetylene flame angle on the erosion resistance of SiC/ZrB2–SiC/ZrB2 multilayer coatings with the gradient structure was investigated. To this aim, first, the SiC inner layer was applied by the reactive melt infiltration (RMI) technique; then ZrB2 and ZrB2–SiC layers with 10, 20 and 30%wt. SiC were applied on graphite by the plasma spraying technique. To prevent the oxidation of ZrB2 and SiC particles, the plasma spraying process was performed by a solid protective shield. To evaluate the performance of the coatings in erosive environments, the samples were exposed to oxy-acetylene flame at the angles of 30°, 60° and 90° for 360 s; the destruction mechanism of SiC/ZrB2–SiC/ZrB2 multilayer coatings appeared to be controlled mechanically and chemically. The results of the erosion test showed that at the low flame angles of about 30°, due to the shear forces of oxy-acetylene flame, mechanical erosion overcame the chemical one. With increasing the flame angle, due to raising the surface temperature, chemical erosion overcame the mechanical one; so, most chemical destruction occurred at the flame angle of 90°. Also, the results of the erosion test showed that the total chemical and mechanical destruction at the angle of 60° was greater than that in other angles. Also, among the coatings tested, SiC/ZrB2- 20% wt. SiC/ZrB2 coatings had the best erosion resistance; so, the weight changes under the oxy-acetylene flame at the angles of 30° and 60°, respectively, were about ?0.038%. and ?0.355%; meanwhile, at the angle of 90°, it was about +4.3%.  相似文献   

14.
Considerable efforts are being invested to explore new thermal barrier coating (TBC) materials with higher temperature capability to meet the demand of advanced turbine engines. In this work, LaTi2Al9O19 (LTA) is proposed and investigated as a novel TBC material for application at 1300 °C. LTA showed excellent phase stability up to 1600 °C. The thermal conductivities for LTA coating are in a range of 1.0-1.3 W m−1 K−1 (300-1500 °C) and the values of thermal expansion coefficients increase from 8.0 to 11.2 × 10−6 K−1 (200-1400 °C), which are comparable to those of yttria stabilized zirconia (YSZ). The microhardness of LTA and YSZ coatings were in the similar level of ∼7 GPa, however, the fracture toughness value was relatively lower than that of YSZ. The lower fracture toughness was compensated by the double-ceramic LTA/YSZ layer design, and the LTA/YSZ TBC exhibited desirable thermal cycling life of nearly 700 h at 1300 °C.  相似文献   

15.
《Ceramics International》2022,48(2):1699-1714
In this research, the effect of the ZrB2 middle layer and SiC Weight percentage on the erosion behavior of SiC/ZrB2– SiC/ZrB2 functionally gradient coating were investigated. For this purpose, SiC gradient coating was prepared via the reactive melt infiltration method (RMI). Afterwards ZrB2–SiC layers containing 10, 20 and 30 wt% SiC and, ZrB2 as the outer layer were applied on SiC coated graphite via solid shielding shrouded plasma spraying (SSPS). To investigate the erosion resistance of the coating, the specimens were subjected to oxy-acetylene and propane flame. The results showed that by applying the ZrB2–SiC layer between SiC and ZrB2 coating, due to the gradual change of the coefficient of thermal expansion mismatch and reduction of thermal stresses, erosion resistance improves, so that the coating with 20 wt% SiC with mass and linear erosion rate, ?0.072 × 10?4 g.cm?2.s?1, 0.0166 μm s?1 respectively had the best erosion resistance under oxy propane flame.In the oxyacetylene flame test, a similar result was obtained to the oxy propane test and the SiC/ZrB2-20% wt. SiC/ZrB2 coating had the lowest erosion rate.  相似文献   

16.
ZrO2 + 8 wt.% Y2O3 powder of a mean diameter dVS = 38 μm was milled to obtain fine particles having mean size of dVS = 1 μm. The fine powder was used to formulate a suspension with water, ethanol and their mixtures. The zeta potential of obtained suspensions was measured and found out to be in the range from −22 to −2 mV depending on suspension formulation. The suspension was injected through a nozzle into plasma jet and sprayed onto stainless steel substrates. The plasma spray experimental parameters included two variables: (i) spray distance varying from 40 to 60 mm and (ii) torch linear speed varying from 300 to 500 mm/s. The microstructure of obtained coatings was characterized with scanning electron microscope (SEM) and X-ray diffraction (XRD). The coatings had porosity in the range from 10% to 17% and the main crystal phase was tetragonal zirconium oxide. The scratch test enabled to find the critical load in the range of 9-11 N. Finally, thermal diffusivity of the samples at room temperature, determined by thermographic method, was in the range from 2.95 × 10−7 to 3.79 × 10−7 m2/s what corresponds to thermal conductivities of 0.69 W/(mK) and 0.97 W/(mK) respectively.  相似文献   

17.
The effect of SiC addition (5, 17.5, and 30 vol.%) on the high-energy ball-milling (HEBM) behaviour of ZrB2 is investigated. It was found that the presence of SiC during HEBM did not alter ZrB2 refinement mechanism of repeated brittle fracture followed by cold-welding, thereby leading to the formation of agglomerates consisting of primary nano-particles. SiC did, however, slow down the kinetics of crystallite size refinement and promoted the formation of finer agglomerates. Both of these phenomena became more pronounced with increasing SiC content in the ZrB2 + SiC powder mixtures, and they were attributed to the energy dissipation effect of the nanocrystalline SiC particles during HEBM of the ZrB2 + SiC powder mixture. This study offers the first evidence that the addition of harder materials to softer materials can slow down the refinement of crystallite sizes, and thus provides a new mechanism to control crystallite sizes during HEBM. The simultaneous attainment of nano-particles of ZrB2 and SiC, reduced agglomerate sizes, and homogeneous SiC dispersion at the nanometre scale may have important implications for the ultra-high-temperature ceramic community, as it simplifies the processing route and is likely to facilitate the sintering of ZrB2-SiC composites.  相似文献   

18.
New electrically conductive ternary composites were developed by adding 8 vol.% of ZrN or ZrB2 to a Si3N4-SiC matrix. During hot pressing, ZrB2 reacted with Si3N4 to form ZrSi2, ZrN, Si and BN whereas added ZrN did not undergo any reactions in the Si3N4-SiC-ZrN composite. The composites modified by ZrN or ZrB2 addition showed a lower resistivity (7 × 103 Ω cm and 3 × 10−1 Ω cm) compared to the matrix (3 × 104 Ω cm). Further studies on the grain size distribution and the volume ratio of conducting and non-conducting phases excluded a percolation network of ZrN and ZrSi2 grains. In fact, doping of SiC grains and modified grain boundaries as a consequence of the formation of liquid phases during sintering are suggested to be the reason for the significantly lower resistivity of materials containing ZrSi2.A decrease in the composite resistivity due to a subsequent heat treatment was obtained for all hot-pressed composites.  相似文献   

19.
Photoelectrically active tin selenide coatings of nanometric thickness were manufactured by electrodeposition from separate solutions of Sn and Se precursors. Sn was deposited from acidic SnSO4 electrolytes and Se was deposited from H2SeO3 solutions. Fine-grained Sn coatings were deposited at potential φ = −0.3 V with 100% current efficiency. Se coatings were formed at two potentials: φ = −0.5 V, forming Se0, and φ = −0.85 V, forming Se2− ions. After the Sn coating was immersed into H2SeO3 solution, small quantities (∼2 at.%) of SnSe were formed and SeO32− was adsorbed on the surface. A short-time deposition of Se at φ = −0.5 V passivated the surface, so no Sn dissolution is observed upon anodic polarization. XPS and Auger data indicated that under those conditions 20 at.% of Se0 and only 2 at.% of SnSe were formed. Thickening of Sn and Se layers led to formation of larger quantities of Se0 (75 at.%) and SnSe (4-5 at.%) on the surface, whereas deeper layers contained up to 10 times more of SnSe phase. Upon deposition of Se at φ = −0.85 V, new SnSe2 phase was formed and the quantity of SnSe phase is increased and that of Se0 was reduced. All coatings formed exhibited photoelectric properties.  相似文献   

20.
3.5 μm thin layers of dense, crack-free, proton conducting, SiO2-rich glass have been developed on ZrB2–SiC ceramic composites, by thermal oxidation at 1400 °C for 30 min in air. A conductivity of 2 mS cm−1 at 25 °C was found, as measured by AC impedance and steady-state voltammetry, and was estimated at ca. 2 × 10−2 S cm−1 at 80 °C. A striking behaviour of the oxidized ZrB2–SiC composites is also pointed out: underneath the glass layer, there is a porous layer rich in electronic conductive ZrB2, without well-defined interface between them, i.e., exhibiting a composition gradient in oxygen. In other words, protonic half-fuel cells could be fabricated under such conditions, for future use in hydrogen or direct alcohol fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号