首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the temporal profile of the reduction in focal cerebral ischemic damage exerted by aminoguanidine (AG), an inhibitor of inducible nitric oxide synthase (iNOS). In anesthetized spontaneously hypertensive rats, the middle cerebral artery (MCA) was occluded distal to the origin of the lenticulostriate arteries. Rats were treated with vehicle (saline) or AG (100 mg kg-1, i.p.) immediately after MCA occlusion and, thereafter, two times per day. Rats were sacrificed 1(n = 7), 2(n = 8), 3 (n = 6) or 4 days (n = 5) after MCA occlusion. Injury volume (mm3) was determined in thionin-stained sections using an image analyzer. Volumes were corrected for ischemic swelling. Administration of AG up to 2 days after MCA occlusion did not reduce cerebral ischemic damage (p < 0.05 from vehicle; t-test). Treatment for a longer period decreased injury volume, the reduction averaging 21 +/- 5% at 3 days (p < 0.05) and 30 +/- 9% at 4 days (p < 0.05). Aminoguanidine did not affect ischemic brain swelling (p > 0.05). Administration of AG did not substantially modify arterial pressure, arterial blood gases, pH, hematocrit, plasma glucose and rectal temperature. We conclude that the protective effect of AG is time-dependent and occurs only when the drug is administered for longer than 2 days, starting after induction of ischemia. Because iNOS enzymatic activity develops more than 24 h after MCA occlusion [C. Iadecola, X. Xu, F. Zhang, E.E. El-Fakahany, M.E. Ross, Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia, J. Cereb. Blood Flow, Metab. 14 (1995) 52-59; C. Iadecola, F. Zhang, X. Xu, R. Casey, M.E. Ross, Inducible nitric oxide synthase gene expression in brain following cerebral ischemia, J. Cereb. Blood Flow Metab. 15 (1995) 378-384.], the data support the hypothesis that the protective effect of AG is medicated by inhibition of iNOS in the post-ischemic brain.  相似文献   

2.
Electrical stimulation of the cerebellar fastigial nucleus (FN) increases CBF and reduces brain damage after focal ischemia. We studied whether FN stimulation "protects" the brain from ischemic damage by increasing blood flow to the ischemic territory. Sprague-Dawley rats were anesthetized (halothane 1-3%) and artificially ventilated through a tracheal cannula inserted transorally. CBF was monitored by a laser-Doppler probe placed over the convexity at a site corresponding to the area spared from infarction by FN stimulation. Arterial pressure (AP), blood gases, and body temperature were controlled, and the electroencephalogram (EEG) was monitored. The stem of the middle cerebral artery (MCA) was occluded. After occlusion, the FN was stimulated for 60 min (100 microA; 50 Hz; 1 s on-1 s off) while AP was maintained at 97 +/- 11 mm Hg (mean +/- SD) by controlled hemorrhage. Rats were then allowed to recover, and infarct volume was determined 24 h later in thionin-stained sections. In unstimulated rats (n = 7), proximal MCA occlusion reduced CBF and the amplitude of the EEG. One day later, these rats had infarcts involving neocortex and striatum. FN stimulation after MCA occlusion (n = 12) enhanced CBF and EEG recovery [61 +/- 34 and 73 +/- 43%, respectively at 60 min; p < 0.05 vs. unstimulated group; analysis of variance (ANOVA)] and reduced the volume of the cortical infarct by 48% (p < 0.05). In contrast, hypercapnia (PCO2 = 64 +/- 4; n = 7) did not affect CBF and EEG recovery or infarct volume (p > 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
This study was undertaken to test whether transient depolarizations occurring in periinfarct regions are important in contributing to infarct spread and maturation. Following middle cerebral artery (MCA) occlusion we stimulated the ischemic penumbra with recurrent waves of spreading depression (SD) and correlated the histopathological changes with the electrophysiological recordings. Halothane-anesthetized, artificially ventilated Sprague-Dawley rats underwent repetitive stimulation of SD in intact brain (Group 1; n = 8) or photothrombotic MCA occlusion coupled with ipsilateral common carotid artery occlusion (Groups 2 and 3, n = 9 each). The electroencephalogram and direct current (DC) potential were recorded for 3 h in the parietal cortex, which represented the periinffarct border zone in ischemic rats. In Group 2, only spontaneously occurring negative DC shifts occurred; in Group 3, the (nonischemic) frontal pole of the ischemic hemisphere was electrically stimulated to increase the frequency of periinfarct DC shifts. Animals underwent perfusion-fixation 24 h later, and volumes of complete infarction and scattered neuronal injury ("incomplete infarction") were assessed on stained coronal sections by quantitative planimetry. Electrical induction of SD in Group 1 did not cause morphological injury. During the initial 3 h following MCA occlusion, the number of spontaneous periinfarct depolarization in Group 2 (7.0 +/- 1.5 DC shifts) was doubled in Group 3 by frontal current application (13.4 +/- 2.7 DC shifts; p < 0.001). The duration as well as the integrated negative amplitude of DC shifts over time were significantly greater in Group 3 than in Group 2 rats (duration, 5.7 +/- 3.8 vs. 4.1 +/- 2.5 min; p < 0.05). Histopathological examination disclosed well-defined areas of pannecrosis surrounded by a cortical rim exhibiting selectively damaged acidophilic neurons and astrocytic swelling in otherwise normal-appearing brain. Induction of SD in the ischemic hemisphere led to a significant increase in the volume of incomplete infarction (19.0 +/- 6.1 mm3 in Group 3 vs. 10.3 +/- 5.1 mm3 in Group 2; p < 0.01) and of total ischemic injury (100.7 +/- 41.0 mm3 in Group 3 vs. 66.5 +/- 24.7 mm3 in Group 2; p < 0.05). The integrated magnitude of DC negativity per experiment correlated significantly with the volume of total ischemic injury (r = 0.780, p < 0.0001). Thus, induction of SD in the ischemic hemisphere accentuated the development of scattered neuronal injury and increased the volume of total ischemic injury. This observation may be explained by the fact that with limited perfusion reserve, periinfarct depolarization are associated with episodic energy failure in the acute ischemic penumbra.  相似文献   

4.
Lysosomal proteases, although tightly regulated under physiological conditions, are known to contribute to cell injury after various forms of tissue ischemia have occurred. Because cathepsin B is a prominent lysosomal protease found in brain parenchyma, the authors hypothesized that it may contribute to neuronal cell death after focal cerebral ischemia. The authors measured the expression and spatial distribution of cathepsin B within the ischemic brain in 43 animals by means of immunohistochemical analysis in a rat model of transient middle cerebral artery (MCA) occlusion. Cathepsin B activity was also measured within specific ischemic brain regions by using an in vitro assay (22 animals). In addition, the authors tested the therapeutic effect of preischemic intraventricular administration of stefin A, a cysteine protease inhibitor, on the volume of cerebral infarction after transient MCA occlusion (15 animals). Increased cathepsin B immunoreactivity was detected exclusively within the ischemic neurons after 2 hours of reperfusion following a 2-hour MCA occlusion. Cathepsin B immunolocalization in the ischemic region decreased by 24 hours of reperfusion, but then increased by 48 hours of reperfusion because the infarct was infiltrated by inflammatory cells. Increased immunolocalization of cathepsin B in the inflammatory cells located in the necrotic infarct core continued through 7 days of reperfusion. Cathepsin B enzymatic activity was significantly increased in the ischemic tissue at 2, 8, and 48 hours, but not at 24 hours of reperfusion after 2 hours of MCA occlusion. Continuous intraventricular infusion of stefin A, before 2 hours of MCA occlusion (15 animals), significantly reduced infarct volume compared with control animals (12 animals): the percentage of hemispheric infarct volume was 20+/-3.9 compared with 33+/-3.5 (standard error of the mean; p = 0.025). These data indicate that neuronal cathepsin B undergoes increased expression and activation within 2 hours of reperfusion after a 2-hour MCA occlusion and may be a mechanism contributing to neuronal cell death. Intraventricular infusion of stefin A, an inhibitor of cathepsin B, significantly reduces cerebral infarct volume in rats.  相似文献   

5.
JH Garcia  KF Liu  ZR Ye  JA Gutierrez 《Canadian Metallurgical Quarterly》1997,28(11):2303-9; discussion 2310
BACKGROUND AND PURPOSE: The clinical syndrome of transient ischemic attacks is accompanied in a significant percentage of patients by brain lesions or neuroimaging abnormalities whose structural counterparts have not been defined. The objective of this study was to analyze, in an experimental model of short-term (< 25 minutes) focal ischemia and long-term (< or = 28 days) reperfusion, the extent and nature of the structural abnormalities affecting neurons and glia located within the territory of the transiently occluded artery. METHODS: Adult Wistar rats (n = 121) had the origin of one middle cerebral artery (MCA) occluded with a nylon monofilament for periods of 10 to 25 minutes. Experiments of transient MCA occlusion were terminated at variable periods ranging from 1 day to 4 weeks. Control experiments consisted of (1) MCA occlusion without reperfusion (n = 7) lasting 7 to 14 days and (2) sham operations (n = 2) followed by 1- to 4-day survival. After in situ fixation, brain specimens were serially sectioned and subjected to detailed morphometric evaluations utilizing light and electron microscopes. The statistical method used to evaluate the results was based on ANOVA followed by Bonferroni's corrected t test and Student's t test comparisons. RESULTS: Brain lesions were not detectable in the sham-operated controls. All brains with permanent MCA occlusion (7 to 14 days) had large infarctions with abundant macrophage infiltration and early cavitation. Forty-five (37%) of the experiments involving transient MCA occlusion had no detectable brain lesions after 4 weeks. Selective neuronal necrosis was found in 76 of 121 rats (63%) with transient MCA occlusion. Neuronal necrosis always involved the striatum, and in 29% of the brains with ischemic injury, necrosis also included a short segment of the cortex. In the striatum, the length of the arterial occlusion was the main determinant of the number of necrotic neurons (20 minutes [22.6 +/- 19] is worse than 10 minutes [4.9 +/- 7]) (P < .0001). In the cortex, the length of reperfusion determined the number of necrotic neurons appearing in layer 3. Experiments with reperfusion of 4 to 7 days' duration yielded more necrotic neurons per microscopic field (2.02 +/- 3) than those lasting fewer days (0.04 +/- 0.1) (P < .05). The histological features of these lesions underwent continuous change until the end of the fourth week, at which time necrotic neurons were still visible both in the striatum and in the cortex. CONCLUSIONS: Arterial occlusions of short duration (< 25 minutes) produced, in 76 of 121 experiments (63%), brain lesions characterized by selective neuronal necrosis and various glial responses (or incomplete infarction). This lesion is entirely different from the pannecrosis/cavitation typical of an infarction that appears 3 to 4 days after a prolonged arterial occlusion. Delayed neuronal necrosis, secondary to a transient arterial occlusion or increasing numbers of necrotic neurons in experiments with variable periods of reperfusion, was a response observed only at a predictable segment of the frontoparietal cortex.  相似文献   

6.
The expression and localization of P- and E-selectins in rat brain (n=126) were examined using immunohistochemical techniques at various time points after induction of middle cerebral artery (MCA) occlusion in the suture, thrombotic and embolic models of stroke. Expression of P- or E-selectin was not observed in brain tissue of sham operated control rats (n=9). P-selectin immunoreactivity was detected as early as 15 min and decreased to control level at 1 h after the onset of the MCA occlusion in all three models. P-selectin then slightly increased at 2 h and peaked at 6 h after MCA occlusion. E-selectin immunoreactivity was first observed at 2 h and peaked at 6 h and 12 h of after MCA occlusion in all three models. P- and E-selectin immunoreactivity was colocalized with von Willebrand factor immunoreactive microvessels. 90.4+/-2.0% of all vessels expressing P-selectin immunoreactivity were 7.5 to 30.0 micron in diameter; 3.6+/-1.4% were contained in vessels smaller than 7.5 micron, and 6.0+/-1.8% were localized in vessels greater than 30.0 micron in diameter. The percent distribution of E-selectin immunoreactive vessels were 75.9+/-2.1% in vessels 7.5 to 30.0 micron in diameter; 23.6+/-2.2% were in vessels smaller than 7.5 micron, and 0.6+/-0.4% were localized in vessels greater than 30.0 micron in diameter. These findings indicate that the temporal profiles of P- and E-selectin expression are independent of these models of MCA occlusion and are consistent with the time course of selectin mediated leukocyte infiltration after focal cerebral ischemia in the rat.  相似文献   

7.
The rat middle cerebral artery (MCA) occlusion model with an intraluminal filament is well characterized with a two hour period of occlusion in widespread use. The recent availability of transgenic animals has led to an interest in adapting the MCA model in the mouse. To date the model has not been well characterized in the mouse. We performed the present study to compare different durations of MCA occlusion and to validate new functional assessments in this model. The MCA occlusion model (5-0 filament) was used. Swiss-Webster mice, 24-44 g, were randomly assigned to four groups: one hour of occlusion; two hours of occlusion; three hours of occlusion; or permanent occlusion. At 48 hours post-ischemia, the animals were rated on three neurologic function scales, and then the brains were removed for lesion size determination. Overall, there was a significant difference in lesion volume (p < 0.001) between the groups. In the permanent group of mice, the average lesion volume was 78.41 +/- 17.47 mm (n = 12); two and three hours of ischemia produced 51.29 +/- 29.82 mm3 (n = 11) and 54.85 mm3 (n = 13), respectively, significantly different than the one hour group 14.84 +/- 31.34 mm3 (n = 11). All three functional scoring systems found significant overall differences between the four groups with our detailed General and Focal scores producing more robust between group treatment differences and showing correlation coefficients of r = 0.766 and r = 0.788, respectively to infarct volume. The MCA filament occlusion model can be successfully adapted in the mouse with either two or three hour occlusions producing reliable infarcts. New functional scoring systems unique to the mouse appear to add additional information.  相似文献   

8.
H Cai  H Yao  S Ibayashi  H Uchimura  M Fujishima 《Canadian Metallurgical Quarterly》1998,29(9):1982-6; discussion 1986-7
BACKGROUND AND PURPOSE: To analyze the effects of substrain and gender differences in spontaneously hypertensive rats (SHR) and distal middle cerebral artery (MCA) branching patterns on infarct size, we compared infarct volumes produced by photothrombotic distal MCA occlusion using SHR/Kyushu and SHR/Izumo (Izm). METHODS: Twenty-four male and 8 female SHR/Kyushu, 15 male and 5 female SHR/Izm, and 6 male Wistar-Kyoto rats (WKY)/Izm (5 to 7 months old) were subjected to photothrombotic distal MCA occlusion, and infarct volumes were determined. RESULTS: Although blood pressure levels were essentially the same between the two substrains of hypertensive rats, infarct volumes were significantly larger in the SHR/Kyushu substrain than in SHR/Izm of either sex (P<0.001); infarct volumes in male and female SHR/Kyushu were 83.8+/-11.7 and 58.5+/-9.2 mm3, and those in male and female SHR/Izm were 61.5+/-10.7 and 34.8+/-7.9 mm3, respectively (values are mean+/-SD). Male SHR/Kyushu that had simple Y-shaped MCA showed smaller infarcts (75.8+/-14.6 mm3, n=11) than those with more branching (regular) MCA (93.2+/-19.1, n=13), the difference being significant (P=0.022). Male SHR/Izm with simple distal MCA also produced smaller infarctions than those with regular MCA (51.0+/-3.7 versus 68.9+/-8.7 mm3, P=0.0004). CONCLUSIONS: Photothrombotic occlusion of distal MCA in hypertensive rats provides a simple and reproducible model of focal ischemia. Most importantly, this study emphasizes the substantial variabilities in infarct sizes caused by the differences in substrains of SHR, gender, and distal MCA patterns.  相似文献   

9.
Cell membrane depolarization and tissue acidosis occur rapidly in severely ischemic brain. Preischemic hyperglycemia is recognized to increase ischemic tissue acidosis and the present studies were undertaken to correlate depolarization and tissue acidosis during acute focal cerebral ischemia and hyperglycemia. We used a dual-label autoradiography method to simultaneously measure the in vivo distribution of [3H]nimodipine and [14C]DMO (5,5-dimethyl-2,4-oxazolidinedione) in brain to identify regions of ischemic depolarization and measure regional net tissue pH. Regional cerebral blood flow (CBF) was measured in separate studies. Measurements were made 30 minutes after combined middle cerebral artery and ipsilateral common carotid artery occlusion in normoglycemic and hyperglycemic rats. Tissue pH in the ischemic cortex was depressed to 6.76 +/- 0.11 in normoglycemic rats (n = 12) and 6.57 +/- 0.13 in hyperglycemic rats (n = 12), with significantly greater acidosis in the hyperglycemic group (P < 0.001). In contrast the ratio of [3H]nimodipine uptake in the ischemic cortex relative to the contralateral nonischemic cortex was significantly greater in normoglycemic (1.83 +/- 0.45) than hyperglycemic (1.40 +/- 0.50) rats (P < 0.05). Within this region of ischemic cortex CBF was 31 +/- 22 mL/100 g in normoglycemic rats (n = 8) and 33 +/- 22 mL/100 g/min in hyperglycemic rats (n = 9). Cerebral blood flow did not differ between these two groups in any region. Thus hyperglycemia reduced the extent of ischemic depolarization within the cortex during the first 30 minutes of focal cerebral ischemia. This effect may be related to the increased tissue acidosis or to other factors that may lessen calcium influx and preserve cellular energy stores in the ischemic cortex of the hyperglycemic rats.  相似文献   

10.
Apoptosis or programmed cell death may be involved in neuronal death in the cerebral cortex after a permanent focal ischemic insult. Studies indicate that protein p53 is a major determinant of the cellular mechanism that leads to programmed cell death. Wild-type C57 mice and two groups of transgenic C57 mice, one homozygous and the other heterozygous for a p53 null gene, were subjected to middle cerebral artery occlusion. As expected, the wild-type mice had a large, consistent infarct volume (22.11 +/- 4.59 mm3; n = 10). Both transgenic groups had significantly less ischemic damage than the wild-type control group. However, unexpectedly, the heterozygous group had the least amount of ischemic damage (16.12 +/- 1.71 mm3, n = 11; 27% reduction in infarct size). The ischemic damage in the homozygous group (18.72 +/- 3.48 mm3, n = 9) was significantly less than in the wild-type control (15% reduction in infarct size) but significantly more than in the heterozygous group. Thus, although the absence of p53 expression was protective, greater protection was afforded by reduced expression of p53. These data suggest that attenuated p53 expression may be protective after an ischemic event.  相似文献   

11.
The purpose of the study was to assess effects of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist D-(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylic acid (D-CPPene) upon focal cerebral infarction and brain oedema in the rat. Focal cerebral ischaemia was produced by permanent occlusion of the middle cerebral artery under halothane anaesthesia. The anaesthetic gas was discontinued immediately after the occlusion and the rats were killed 24 hours later. Cerebral infarction and brain swelling were each assessed on the frozen brain sections at 8 predetermined coronal planes. Pretreatment with D-CPPene (4.5 mg/kg i.v. followed by continuous infusion at 3 mg/kg/h until sacrifice) 15 minutes prior to MCA occlusion, significantly reduced the volume of infarction in the cerebral hemisphere by 29% (p < 0.05). Brain swelling, obtained by subtracting the nonischaemic hemispheric volume from the ischaemic hemispheric volume, was significantly reduced with D-CPPene treatment and the mean reduction in swelling (34% less than the controls: p < 0.001) proportionately similar to the decrease in infarct volume in the same animals. These data indicate that systemic administration of the competitive NMDA receptor antagonist D-CPPene has neuroprotective effects against ischaemic brain damage, and the reduction in brain swelling occurs in parallel with the reduction in ischaemic damage.  相似文献   

12.
Slow potential recording was used for long-term monitoring of the penumbra zone surrounding an ischemic region produced by middle cerebral artery (MCA) occlusion in adult hooded rats (n = 32). Four capillary electrodes (El-E4) were chronically implanted at 2-mm intervals from AP -3, L 2 (El) to AP 0, L 5 (E4). Spontaneous or evoked slow potential waves of spreading depression (SD) were recorded during and 4 h after a 1-h MCA occlusion and at 2- to 3-day intervals afterward for 3 weeks. Duration of the initial focal ischemic depolarization was maximal at E4 and decreased with distance from the focus. SD waves in the penumbra zone were high at El and E2, low and prolonged at E3, and almost absent at E4. Amplitude of elicited SD waves was further reduced 3 days later and slowly increased in the following week. Cortical areas displaying marked reduction of SD waves in the first days after MCA occlusion either remained low or showed substantial (60%) recovery, the probability of which decreased with the duration of the initial focal ischemic depolarization and increased with the distance from the focus. It is concluded that the outcome of ischemia monitored by long-term SD recovery in the perifocal region can be partly predicted from the acute signs of MCA occlusion.  相似文献   

13.
Iodine-123-iomazenil (IMZ) is a SPECT ligand for central-type benzodiazepine receptors, which are located only on neurons. We evaluated the feasibility of using IMZ SPECT for identifying neuronal damage in patients with the chronic phase of thrombotic cerebral ischemia. METHODS: We studied 15 patients with angiographically-confirmed unilateral severe occlusive lesions (occlusion or > 70% stenosis) in the carotid system. IMZ SPECT images obtained 180 min after injection of 167-222 MBq IMZ were analyzed. The regional cerebral blood flow and perfusion reserve were evaluated for comparison with IMZ SPECT findings, using the split-dose 123I-iodoamphetamine (IMP) SPECT method, coupled with intravenous injection of 1 g acetazolamide. On both SPECT images, the count ratio of the affected to the nonaffected whole MCA territory (A/NA ratio) and of the contralateral to the ipsilateral cerebellar cortex (C/I ratio) were determined. RESULTS: The A/NA ratio with IMZ was significantly higher than that with IMP (94.5% +/- 6.2% versus 91.4% +/- 6.6%, p < 0.005), although a significantly positive correlation was found between these two ratios (r = 0.854, p < 0.0001). The C/I ratio with IMP was decreased significantly in 5 patients compared with that in normal subjects, whereas the C/I ratio with IMZ was decreased in only 1 patient. There was no significant correlation between the A/NA ratio with IMZ and the perfusion reserve in the affected MCA territory. In 2 of 5 patients with a decreased A/NA ratio (<90%) with IMZ, decreased blood flow with preserved perfusion reserve and cerebral hemispheric atrophy were observed, which suggested the influence of neuronal loss due to chronic ischemia. CONCLUSION: These findings indicate that IMZ SPECT, which provides new information regarding neuronal damage after ischemic insult to the brain, is useful for evaluating thrombotic cerebral ischemia.  相似文献   

14.
BACKGROUND: The mechanisms by which increased pulmonary blood flow results in pulmonary hypertension have not been determined. METHODS: To determine if increased pulmonary blood flow produces endothelial dysfunction that precedes vascular remodeling and smooth muscle proliferation, neonatal swine (n = 12) (age, 6.1+/-0.5 days) underwent ligation of the left pulmonary artery (LPA) to increase blood flow to the right lung. At 12 weeks of age, endothelium-dependent vasodilatation was assessed by acetylcholine infusion and endothelium-independent vasodilatation by inhaled nitric oxide (NO) in the LPA group and age-matched controls (CON) (n = 11). RESULTS: Mean pulmonary artery pressure was 24.1+/-3.0 mm Hg in the LPA group and 20.8+/-1.9 mm Hg in the CON group (p < 0.1). Pulmonary vascular resistance was 13.2+/-2.2 Wood units in the LPA group and 5.8+/-0.8 Wood units in the CON group (p = 0.001). Acute occlusion of the left pulmonary artery in the CON group increased pulmonary vascular resistance to 6.9+/-3.9 Wood units (p = 0.04). Administration of acetylcholine in the CON group after preconstriction with the thromboxane A2 analogue U46619 resulted in a 30.6%+/-5.4% decrease in pulmonary vascular resistance. In the LPA group, acetylcholine produced paradoxical vasoconstriction and a 15.4%+/-4.1% increase in pulmonary vascular resistance (p < 0.001 versus CON) indicating loss of endothelium-dependent vasodilatation. Nitric oxide decreased pulmonary vascular resistance by 41.9%+/-3.3% in the CON group and 30.8%+/-2.7% in the LPA group (p = 0.04 versus CON), indicating preserved endothelium-independent vasodilatation in both groups. Morphometric analysis was performed in 4 animals from each group. Medial wall thickness as percent of external diameter of small arteries (<100 microm) was the same in both groups (6.4%+/-0.4% in the LPA group versus 6.6% +/-0.4% in the CON animals; p > 0.1). CONCLUSIONS: Increased pulmonary blood flow in immature animals produces endothelial cell dysfunction with loss of endothelium-dependent vasodilatation before the onset of pulmonary vascular remodeling. Subsequent smooth muscle proliferation may be mediated by endothelium-derived factors.  相似文献   

15.
Entry of plasma proteins into damaged neurons has previously been demonstrated in various pathological conditions, but little is known about brain infarcts in this respect. In the present study, focal ischemic lesions were produced in rats by permanent occlusion of the middle cerebral artery (MCA). The animals were killed from 1 to 48 h postlesion. Leakage of plasma proteins across the blood-brain barrier into the infarcted area was visualized with immunostaining 2-3 h after the occlusion. This is earlier than in most previous reports. Entry of plasma proteins into ischemic neurons was seen 3 h after permanent occlusion of the MCA, while reliable changes were not seen until 12-24 h in sections stained with hematoxylin and eosin (H & E). Ischemic neurons stained for plasma proteins irrespective of their morphological appearance. Even cells that appeared normal with H & E staining were positively labeled. The technique may be used to diagnose very early ischemic lesions.  相似文献   

16.
OBJECTIVE: The contribution of alpha-adrenergic receptor subtypes in mediation of coronary vasoconstriction during ischemia remains controversial. This study investigated the effects of alpha-adrenergic subtypes blockade on regional myocardial function in a canine ischemic model. DESIGN: Prospective, randomized, controlled trial. SETTING: Experimental animal laboratory in a university medical center. PARTICIPANTS: Thirty-two adult dogs, weighing 13 to 22 kg. INTERVENTIONS: The animals were prepared with pentobarbital, oxygen, enflurane and pancuronium. Two selective alpha 1-adrenergic antagonists (bunazosin, 50 micrograms/kg/min, n = 8, and prazosin, 25 micrograms/kg/min, n = 8) and the alpha 2-adrenergic antagonist (yohimbine, 15 micrograms/kg/min, n = 8) were administered after the partial occlusion of the left circumflex coronary artery (LCX) during beta-adrenergic blockade (propranolol, 1 mg/kg). MEASUREMENTS AND MAIN RESULTS: Myocardial systolic segment shortening (%SS) and a myocardial lactate extraction ratio (LER) were used as indices of regional myocardial and metabolic function. Compared with poststenotic condition, coronary blood flow of the LCX was increased by 123% with bunazosin and 138% with prazosin (p < 0.05, respectively). Both %SS and LER in the ischemic myocardium were significantly improved after treatment with both alpha 1-adrenergic antagonists (in the bunazosin group, %SS, 8.3 +/- 1.9 to 10.4 +/- 2.2%, p < 0.05; LER, -12.8 +/- 12.3 to 6.2 +/- 15.9%, p < 0.01; in the prazosin group, %SS, 8.5 +/- 1.6 to 10.3 +/- 1.9%, p < 0.05; LER, -10.2 +/- 5.7 to 3.6 +/- 10.2%, p < 0.05). In contrast, coronary blood flow of the LCX, %SS and LER were not different from poststenotic condition during alpha 2-adrenergic receptor blockade with yohimbine. The salutary effect of bunazosin was also observed after mechanically controlling for the afterload reduction produced by alpha 1-adrenergic blockade (n = 8). Prazosin and yohimbine were found to produce a significant increase in plasma norepinephrine levels in contrast to bunazosin, which had no significant effect. CONCLUSIONS: These data indicate that alpha 1-adrenergic blockade increases coronary blood flow and improves regional myocardial function during myocardial ischemia.  相似文献   

17.
BACKGROUND AND PURPOSE: E-selectin participates in leukocyte-endothelial adhesion and the inflammatory processes that follow focal cerebral ischemia and reperfusion. The temporal and topographical patterns of microvascular E-selectin presentation after experimental focal cerebral ischemia are relevant to microvascular reactivity to ischemia. METHODS: The upregulation and fate of E-selectin antigen during 2 hours of middle cerebral artery occlusion (n = 4) and 3 hours of occlusion with reperfusion (1 hour, n = 4; 4 hours, n = 6; 24 hours, n = 6) were evaluated in the nonhuman primate. E-selectin and E:P-selectin immunoreactivities were semiquantitated with the use of computerized light microscopy video imaging and laser confocal microscopy. RESULTS: Three patterns of microvascular E-selectin expression, defined by the antibody E-1E4, were confirmed by complete elimination of E-1E4 binding after incubation with soluble recombinant human E-selectin: (1) Low immunoperoxidase intensity was observed in ischemic microvessels at 2 hours of occlusion extending to 4 hours of reperfusion (E-selectin/laminin = 0.32 +/- 0.10). (2) A significant fraction of ischemic microvessels displayed high-intensity E-selectin signal by 24 hours of reperfusion (0.61 +/- 0.17) compared with control and nonischemic tissues (2P < .003). (3) In the contralateral nonischemic basal ganglia and other nonischemic tissues, low but significant E-selectin levels appeared by 24 hours of reperfusion (2P = .0005). The latter were further confirmed by an E:P-selectin immunoprobe. CONCLUSIONS: E-selectin antigen is distinctively and significantly upregulated in nonhuman primate brain after focal ischemia and reperfusion. The late appearance of E-selectin in nonischemic cerebral tissues suggests stimulation by transferable factors generated during brain injury.  相似文献   

18.
The possible effects of the polyamine interconversion pathway on tissue polyamine levels, brain edema formation, and ischemic injury volume were studied by using a selective irreversible inhibitor, MDL 72527, of the interconversion pathway enzyme, polyamine oxidase. In an intraluminal suture occlusion model of middle cerebral artery in spontaneously hypertensive rats, 100 mg/kg MDL 72527 changed the brain edema formation from 85.7 +/- 0.3 to 84.5 +/- 0.9% in cortex (p < 0.05) and from 79.9 +/- 1.7 to 78.4 +/- 2.0% in subcortex (difference not significant). Ischemic injury volume was reduced by 22% in the cortex (p < 0.05) and 17% in the subcortex (p < 0.05) after inhibition of polyamine oxidase by MDL 72527. There was an increase in tissue putrescine levels together with a decrease in spermine and spermidine levels at the ischemic site compared with the nonischemic site after ischemia-reperfusion injury. The increase in putrescine levels at the ischemic cortical and subcortical region was reduced by a mean of 45% with MDL 72527 treatment. These results suggest that the polyamine interconversion pathway has an important role in the postischemic increase in putrescine levels and that blocking of this pathway can be neuroprotective against neuronal cell damage after temporary focal cerebral ischemia.  相似文献   

19.
20.
The objective of this study was to determine whether brief focal ischemia induces ischemic tolerance in rat brain. Focal ischemia was produced in Wistar rats by occluding the middle cerebral artery (MCA) for 20 min at a distal site. Following recovery for 24 h, the animals were subjected to a 10-min episode of forebrain ischemia using a combination of bilateral carotid artery occlusion and systemic hypotension. Histologic injury, assessed after a survival period of 3-4 days, consisted of selective neuronal necrosis bilaterally in cerebral cortex, striatum, hippocampus, and thalamus superimposed upon a small cortical infarct adjacent to the site of MCA occlusion. However, the intensity of neuronal necrosis in the MCA territory of the neocortex ipsilateral to MCA occlusion was markedly less than that in the contralateral MCA cortex. In contrast, the extent of neuronal necrosis in subcortical structures was similar in both hemispheres. Unexpectedly, animals in which the MCA was manipulated, but not occluded, also exhibited a marked reduction of neuronal necrosis in the ipsilateral MCA neocortex following forebrain ischemia. However, in animals with craniotomy alone, forebrain ischemia caused a similar extent of neuronal necrosis in the MCA neocortex of both hemispheres. Transient occlusion of the MCA induced the focal expression of the 72-kDa heat-shock protein (hsp72) in the MCA territory of the neocortex. Limited expression of hsp72 was also detected following sham occlusion, but not after craniotomy alone. These results demonstrate focal induction of ischemic tolerance in rat neocortex that may be related to expression of heat-shock proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号