首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A crossover experimental design with an extra period was used with four lactating cows (645 kg BW) and two diets to measure the true absorption of Ca and P from alfalfa hay and corn silage. True absorption was calculated after dosing cows intravenously with 45Ca and 32P to measure endogenous fecal losses. In alfalfa hay and alfalfa-corn silage diets, the Ca and P that came from the hay or hay and silage fraction was 94 and 98% and 63 and 84%, respectively. Cows ate more DM (22.7 vs. 20.6 kg/d) and produced more FCM (35.2 vs. 32.0 kg/d) when consuming alfalfa-corn silage compared with alfalfa hay. True absorption of Ca from alfalfa-corn silage was greater (42.2%) than from alfalfa hay (24.6%). Partial true absorption of Ca from alfalfa hay was 23.5% and from corn silage 51.5%. True P absorption for total diet was similar for both alfalfa hay (64.4%) and alfalfa-corn silage (74.6%). Partial true absorption of P from alfalfa hay (67.3%) was different from that from corn silage (80.0%). Fecal endogenous Ca excretion was nearly double the value (31 vs. 16 mg/kg BW) currently used by NRC. True absorption of Ca from alfalfa was lower and from corn silage was higher than currently used in NRC feeding standards. True absorption of P was higher than values currently used by NRC.  相似文献   

2.
The deleterious effect of frost on corn harvested for silage was investigated with 30 lactating Holstein cows fed silages from corn harvested at the milk or dough stage, or after one, two, or five frosts. The fibrous components of the corn plant increased as maturity and dry matter content increased, whereas the mineral content tended to decrease. Dry matter intake and 4% fat-corrected milk increased as maturity of the silage increased up to the silage harvested after two frosts and then declined for the silage harvested after five frosts. Gross energy apparent digestibility decreased from 64.9% for milk stage silage to 60.6% for silage from corn harvested after five frosts. Partitioning of gross energy, nitrogen, calcium, phosphorus, potassium, and magnesium provided similar increasing trends in feed intake, utilization, and milk production from milk stage silage to that harvested after two frosts, then a decline of all measurements occurred with silage harvested after five frosts. Net energy for lactation was calculated for each silage from the observed digestible energy, from a regression equation used by the provincial feed evaluation laboratories, and from a recently published summative equation; the latter method appeared best.  相似文献   

3.
Twenty-four lactating Holstein cows were used in a 6-wk randomized block design trial with a 2 × 2 factorial arrangement of treatments to determine the effects of feeding ground corn (GC) or steam-flaked corn (SFC) in diets based on either annual ryegrass silage (RS) or a 50:50 blend of annual ryegrass and corn silages (BLEND). Experimental diets contained 49.6% forage and were fed as a total mixed ration once daily for 4 wk after a 2-wk preliminary period. No interactions were observed among treatments. Cows fed BLEND consumed more dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) than those fed RS, but total-tract digestibility of OM, NDF, and ADF was greater for RS than for BLEND. No differences in nutrient intake were observed among treatments during wk 4 when nutrient digestibility was measured, but digestibility of DM and OM was greater for SFC than for GC. Cows fed BLEND tended to produce more energy-corrected milk than those fed RS, resulting in improved efficiency (kg of milk per kg of DM intake). When diets were supplemented with SFC, cows consumed less DM and produced more milk that tended to have lower milk fat percentage. Yield of milk protein and efficiency was greatest with SFC compared with GC. Blood glucose and milk urea nitrogen concentrations were similar among treatments, but blood urea nitrogen was greater for cows fed GC compared with those fed SFC. Results of this trial indicate that feeding a blend of annual ryegrass and corn silage is more desirable than feeding diets based on RS as the sole forage. Supplementing diets with SFC improved performance and efficiency compared with GC across forage sources.  相似文献   

4.
Forty-eight mid-lactation Holstein cows were used in a 6-wk completely randomized block design trial with a 4 × 3 factorial arrangement of treatments to determine the effects of feeding different proportions of corn silage and ryegrass silage with supplemental ground corn (GC), steam-flaked corn (SFC), and hominy feed (HF) on the performance of lactating dairy cows. Forage provided 49% of the dietary dry matter in the experimental diets, which were formulated to meet National Research Council requirements. Ryegrass silage provided 100, 75, 50, or 25% of the total forage dry matter, with corn silage supplying the remainder. There were no interactions between the proportion of forage provided by ryegrass silage and energy supplement. Dry matter intake and milk protein percentage decreased linearly with increasing proportions of ryegrass silage, but milk protein yield was similar among forage treatments. There were no differences among forage treatments in milk yield, milk fat percentage and yield, and energy-corrected milk yield. Dry matter intake was higher and there was a tendency for increased milk fat percentage for GC compared with SFC or HF. No other differences were observed in milk yield or composition among energy supplements. Plasma urea nitrogen and glucose concentrations were similar among treatments. Under the conditions of this trial, our results indicate that feeding a combination of corn silage and ryegrass silage is more desirable than feeding ryegrass silage alone, whereas supplementation with GC, SFC, or HF supports similar levels of milk production.  相似文献   

5.
Decreasing the dietary cation-anion difference (DCAD) by using anion sources before calving reduces hypocalcemia in cows at calving. Reduced DCAD from CaCl2-fertilized timothy hay achieves similar results, but the effects of feeding low-DCAD forage as silage have not been determined. The objective of this study was to evaluate the effect of low-DCAD timothy silage on dry cows. Six nonlactating and nonpregnant Holstein cows were used in a replicated 3 × 3 Latin square. Treatments were 1) control diet (DCAD = 232 mEq/kg of dry matter, DM); 2) low-DCAD diet using a low-DCAD timothy silage (LDTS; DCAD = −21 mEq/kg of DM); and 3) low-DCAD diet using a fermentation by-product (LDBP; DCAD = −32 mEq/kg of DM). Differences between dietary treatments were considered statistically significant at P ≤ 0.05 and tendencies were noted when 0.05 < P < 0.10. Compared with the control, feeding LDTS tended to decrease DM intake (10.6 vs. 12.5 kg/d) and decreased urinary pH (6.15 vs. 8.18) as well as apparent digestibility of DM (67 vs. 69%). Blood pH (7.37 vs. 7.42), HCO3 (25.3 vs. 27.5 mM), and base excess (0.4 vs. 3.1 mM) were decreased, and blood Cl (29.6 vs. 29.1 mg/dL) was increased. Apparently absorbed Na and Cl were higher and apparently absorbed K, P, and digested ADF were lower for LDTS compared with the control. Both LDTS and LDBP resulted in similar DM intake. Urinary pH tended to be higher (6.15 vs. 5.98) and percentage of digested DM was lower (67 vs. 70%) with LDTS compared with LDBP. Blood ionized Ca (5.3 vs. 5.4 mg/dL) tended to be lower and blood Cl (29.6 vs. 30.1 mg/dL) was lower, whereas blood pH (7.37 vs. 7.33), HCO3 (25.3 vs. 21.5 mM), and base excess (0.4 vs. −3.8 mM) were higher with LDTS compared with LDBP. Apparent absorption of Na, Cl, S, and P, as well as apparent digestion of acid detergent fiber, neutral detergent fiber, and N were lower, and K, Cl, S, P, Mg, and N were less retained with LDTS compared with LDBP. Results confirm that low-DCAD timothy silage can be used to produce a compensated metabolic acidosis by decreasing the DCAD of rations served to nonlactating dairy cows.  相似文献   

6.
Twenty multiparous Holstein cows, 4 of them surgically fitted with ruminal cannulas, were used in a replicated 4 × 4 Latin square to compare the effects of whole-plant silage and grain produced from NutriDense (ND), leafy NutriDense (LND), or a conventional yellow dent (YD) hybrid on ruminal fermentation, total tract nutrient digestibility, and performance of lactating dairy cows. On a DM basis, diets contained 30.6% corn silage and 27.7% corn grain provided from the 3 hybrids according to the following combinations: 1) YD grain and YD silage, 2) YD grain and LND silage, 3) ND grain and YD silage, and 4) ND grain and LND silage. The average concentrations of crude protein, neutral and acid detergent fiber, and ether extract of LND silage and ND grain were higher, but the contents of nonfibrous carbohydrates and starch were lower than those of their YD counterparts. Although DM intake was similar among treatments, feeding ND grain, LND silage, or both reduced the intakes of nonfibrous carbohydrates and starch but increased the intake of ether extract. Apparent digestibility of starch in the total tract was highest for the diet that contained LND silage and YD grain, whereas the amount and percentage of ether extract that were apparently digested in the total tract was increased and tended to be increased, respectively, by the addition of ND grain, LND silage, or both to the diets. Ruminal fermentation parameters were unaffected by treatments except for the concentration of ammonia nitrogen in the ruminal fluid, which tended to be increased by the feeding of ND grain, LND silage, or both. Production of milk, crude and true protein, fat, lactose, and total solids did not differ among diets. Concentration of milk urea nitrogen increased when the ND grain, LND silage, or both were fed to the cows. Results indicate that ND grain and LND silage were similar to the conventional grain and silage for the feeding of lactating dairy cows.  相似文献   

7.
The objective of this study was to examine the effects of feeding conventional corn silage (CCS) or brown midrib corn silage (BMCS) to dairy cows on CH4 emissions from stored manure. Eight lactating cows were fed (ad libitum) a total mixed ration (forage:concentrate ratio 65:35; dry matter basis) containing 59% (dry matter basis) of either CCS or BMCS. Feces and urine were collected from each cow and mixed with residual sludge obtained from a manure storage structure. Manure was incubated for 17 wk at 20°C under anaerobic conditions (O2-free N2) in 500-mL glass bottles. Methane emissions and changes in chemical composition of the manure were monitored during the incubation period. The total amount of feces and urine excreted was higher for cows fed BMCS than for cows fed CCS [8.6 vs. 6.5 kg/d of volatile solids (VS)]. Manure from cows fed BMCS emitted more CH4 than manure from cows fed CCS (173 vs. 146 L/kg of VS) throughout the incubation period. Similarly, VS and neutral detergent fiber losses throughout incubation were higher for manure from cows fed BMCS versus cows fed CCS (37.6 vs. 30.6% and 46.2 vs. 31.2%, respectively). Manure NH3 concentration (79% of total manure N) was not affected by corn silage cultivar. Results of this study show that using a more digestible corn silage cultivar (BMCS vs. CCS) may increase the contribution of manure to CH4 emissions, and may offset gain achieved by reducing enteric CH4 emissions.  相似文献   

8.
Two corn varieties predicted to differ in digestibility were harvested at 2 cutting heights (10.2 or 30.5 cm) to determine effects on the nutrient content of the resulting silage, nutrient intake, nutrient digestibility, and production of lactating cows fed such corn silage originally harvested at two-thirds milk line. Acid detergent fiber (ADF) concentration was higher and in vitro true dry matter (DM) digestibility (IVTDMD) was lower for the variety predicted to have average digestibility. An interaction was observed between variety and cutting height because of decreased ADF and increased IVTDMD for the average digestibility variety cut at 30.5 vs. 10.2 cm; no differences were observed for the higher digestibility variety at each cutting height. When silages were fed to 32 Holstein cows in a 5-wk randomized design trial, DM intake, milk yield, and milk composition were similar. There was an interaction between variety and cutting height for DM intake and total tract apparent digestibility of DM, crude protein, and neutral detergent fiber because of lower intake and digestibility for the diets containing either the high cut, average quality variety or low cut, higher quality variety. These results suggest that increasing the cutting height to 30.5 cm does not improve silage quality or improve milk yield of cows. Although the 2 varieties selected for this trial were predicted to differ in digestibility, these differences were not great enough to influence milk yield or composition of lactating cows.  相似文献   

9.
《Journal of dairy science》2021,104(9):9827-9841
This study investigated the effects of an amylase-enabled corn silage on lactational performance, enteric CH4 emission, and rumen fermentation of lactating dairy cows. Following a 2-wk covariate period, 48 Holstein cows were blocked based on parity, days in milk, milk yield (MY), and CH4 emission. Cows were randomly assigned to 1 of 2 treatments in an 8-wk randomized complete block design experiment: (1) control corn silage (CON) from an isogenic corn without α-amylase trait and (2) Enogen hybrid corn (Syngenta Seeds LLC) harvested as silage (ECS) containing a bacterial transgene expressing α-amylase (i.e., amylase-enabled) in the endosperm of the grain. The ECS and CON silages were included at 40% of the dietary dry matter (DM) and contained, on average, 43.3 and 41.8% DM and (% DM) 36.7 and 37.5% neutral detergent fiber, and 36.1 and 33.1% starch, respectively. Rumen samples were collected from a subset of 10 cows using the ororuminal sampling technique on wk 3 of the experimental period. Enteric CH4 emission was measured using the GreenFeed system (C-Lock Inc.). Dry matter intake (DMI) was similar between treatments. Compared with CON, MY (38.8 vs. 40.8 kg/d), feed efficiency (1.47 vs. 1.55 kg of MY/kg of DMI), and milk true protein (1.20 vs. 1.25 kg/d) and lactose yields (1.89 vs. 2.00 kg/d) were increased, whereas milk urea nitrogen (14.0 vs. 12.7 mg/dL) was decreased, with the ECS diet. No effect of treatment on energy-corrected MY (ECM) was observed, but a trend was detected for increased ECM feed efficiency (1.45 vs. 1.50 kg of ECM/kg of DMI) for cows fed ECS compared with CON-fed cows. Daily CH4 emission was not affected by treatment, but emission intensity was decreased with the ECS diet (11.1 vs. 10.3 g/kg of milk, CON and ECS, respectively); CH4 emission intensity on ECM basis was not different between treatments. Rumen fermentation, apart from a reduced molar proportion of butyrate in ECS-fed cows, was not affected by treatment. Apparent total-tract digestibility of nutrients and urinary and fecal nitrogen excretions, apart from a trend for increased DM digestibility by ECS-fed cows, were not affected by treatment. Overall, ECS inclusion at 40% of dietary DM increased milk, milk protein, and lactose yields and feed efficiency, and tended to increase ECM feed efficiency but had no effect on ECM yield in dairy cows. The increased MY with ECS led to a decrease in enteric CH4 emission intensity, compared with the control silage.  相似文献   

10.
A study was conducted to investigate the response to supplemental tallow of lactating cows fed basal diets with different alfalfa silage:corn silage ratios. We postulated that supplemental tallow will have decreasing negative effects on rumen fermentation, dry matter intake (DMI), and milk fat percentage as the dietary ratio of alfalfa silage:corn silage is increased. Eighteen Holstein cows averaging 134 +/- 14 d in milk were used in a replicated 6 x 6 Latin square design with 21-d periods. Treatments were arranged as a 2 x 3 factorial with 0 or 2% tallow (DM basis) and three forage treatments: 1) 50% of diet DM as corn silage, 2) 37.5% corn silage and 12.5% alfalfa silage, and 3) 25% corn silage and 25% alfalfa silage. Cows were allowed ad libitum consumption of a total mixed ration. Diets were formulated to contain 18% crude protein and 32% neutral detergent fiber. No fat x forage treatment interactions were observed. Fat supplemented cows had lower DMI and produced more milk with less milk fat content relative to non-supplemented cows. Concentration of trans-octadecenoic acids was higher in milk fat of tallow-supplemented cows. Tallow supplementation had no effect on ruminal pH and acetate:propionate ratio, but tended to decrease total volatile fatty acid (VFA) concentration in the rumen. Increasing the proportion of alfalfa silage increased DMI, milk fat percentage, and milk fat yield regardless of the fat content of the diet. Total VFA concentration and acetate:propionate ratio in the rumen were increased in response to higher levels of alfalfa in the diets. These results suggest that replacing corn silage with alfalfa silage did not alleviate the negative response of dairy cows to tallow supplementation at 2% of diet DM.  相似文献   

11.
The objective of this study was to determine if the length of chop of processed corn silage influences the impact of supplemental fat on rumen fermentation and performance of dairy cows. We hypothesized that increasing forage particle length may alleviate the interference of fat on rumen fermentation. Sixteen Holstein cows averaging 120 d in milk were used in a replicated 4 x 4 Latin square design with 21-d periods. Treatments were arranged as a 2 x 2 factorial with 0 or 2% tallow (dry matter basis), and corn silage harvested at either 19 or 32 mm theoretical length of cut. The forage:concentrate ratio was 50:50, and diets were formulated to contain 18% crude protein and 32% neutral detergent fiber (dry matter basis). Cows were allowed ad libitum consumption of diets that were fed twice daily as a total mixed ration. Fat supplemented cows had lower dry matter intake and produced less milk fat relative to nonsupplemented cows. No effect of corn silage particle length was observed for dry matter intake and milk fat production. Proportion of trans-10 C18:1 and of trans-10, cis-12 conjugated linoleic acid was highest in milk fat of cows fed 2% supplemental tallow. Rumen pH was not affected by feeding tallow, and tended to be highest for cows eating the 32-mm theoretical length of chop corn silage diets. No effect of treatments was observed for rumen acetate-to-propionate ratio or rumen ammonia concentration. In this study, tallow supplementation had a negative impact on performance of dairy cows regardless of the corn silage particle length. Feeding tallow increased formation of trans-fatty acids in the rumen in the absence of significant changes in the rumen environment.  相似文献   

12.
Twenty midlactation Holstein cows (4 ruminally fistulated) averaging 101 ± 34 d in milk and weighing 674 ± 77 kg were used to compare rations with brown midrib corn silage (bm3) to rations with dual-purpose control silage (DP) on N utilization and milk production. The effect of monensin in these rations was also examined. Animals were assigned to one of five 4 × 4 Latin squares with treatments arranged in a 2 × 2 factorial. Cows were fed 1 of 4 treatments during each of the four 28-d periods. Treatments were 1) 0 mg/d monensin and bm3 corn silage, 2) 0 mg/d monensin and DP corn silage, 3) 300 mg/d monensin and bm3 corn silage, and 4) 300 mg/d monensin and DP corn silage. In vitro 30-h neutral detergent fiber (NDF) digestibility was greater for bm3 corn silage (61.0 vs. 49.1 ± 0.62). Dry matter intake (DMI) tended to be greater for cows consuming bm3 corn silage (21.3 vs. 20.2 kg/d). Neither hybrid nor monensin affected milk production, fat, or protein (37.7 kg, 3.60%, or 3.04%). Monensin tended to increase rumen pH (5.89 vs. 5.79 ± 0.07) compared with the control treatment. In addition, bm3 corn silage resulted in a significant decrease in rumen pH (5.72 vs. 5.98 ± 0.07). Supplementing monensin had no effect on molar proportions of acetate, propionate, or butyrate. In contrast, an increase was observed in branched-chain volatile fatty acids. No treatment interactions were observed for rumen pH or molar proportion of propionate but monensin decreased the molar proportion of acetate and increased the molar proportion of butyrate when cattle consumed bm3 silage. Dry matter, N, and acid detergent fiber digestibility were lower for the bm3 ration, whereas NDF digestibility was not different between treatments. There was no effect of hybrid on microbial protein synthesis (1,140 g/d) as estimated by urinary concentration of purine derivatives. Cows consuming bm3 excreted more fecal N than cows consuming DP (38.2 vs. 34.4% N intake); however, based on spot sampling, estimated urinary and manure N were not different between treatments (35.8 and 71.9% N intake). Monensin had no effect on DMI, digestibility of any nutrients, or N metabolism, and there were no hybrid by monensin interactions. Rations including bm3 corn silage tended to increase DMI but did not affect production. The reduction in the digestibility of some nutrients when cows consumed bm3 may have been caused by increased DMI and possible increased digestion in the lower gut. This increase in DMI appeared to also have negatively affected N digestibility but not NDF digestibility. This resulted in a greater amount of N excreted in feces but did not affect total mass of manure N.  相似文献   

13.
Corn silage (CS) has replaced alfalfa hay (AH) and haylage as the major forage fed to lactating dairy cows, yet many dairy producers believe that inclusion of small amounts of alfalfa hay or haylage improves feed intake and milk production. Alfalfa contains greater concentrations of K and Ca than corn silage and has an inherently higher dietary cation-anion difference (DCAD). Supplemental dietary buffers such as NaHCO3 and K2CO3 increase DCAD and summaries of studies with these buffers showed improved performance in CS-based diets but not in AH-based diets. We speculated that improvements in performance with AH addition to CS-based diets could be due to differences in mineral and DCAD concentrations between the 2 forages. The objective of this experiment was to test the effects of forage (CS vs. AH) and mineral supplementation on production responses using 45 lactating Holstein cows during the first 20 wk postpartum. Dietary treatments included (1) 50:50 mixture of AH and CS as the forage (AHCS); (2) CS as the sole forage; and (3) CS fortified with mineral supplements (CaCO3 and K2CO3) to match the Ca and K content of the AHCS diet (CS-DCAD). Feed intake and milk production were equivalent or greater for cows fed the CS and CS-DCAD diets compared with those fed the AHCS diet. Fat percentage was greater in cows fed the CS compared with the AHCS diet. Fat-corrected milk (FCM; 3.5%) tended to be greater in cows fed the CS and CS-DCAD diets compared with the AHCS diet. Feed efficiencies measured as FCM/dry matter intake were 1.76, 1.80, and 1.94 for the AHCS, CS, and CS-DCAD diets, respectively. The combined effects of reduced feed intake and increased FCM contributed to increased feed efficiency with the CS-DCAD diet, which contained 1.41% K compared with 1.18% K in the CS diet, and we speculate that this might be the result of added dietary K and DCAD effects on digestive efficiency. These results indicate no advantage to including AH in CS-based diets, but suggest that improving mineral supplementation in CS-based diets may increase feed efficiency.  相似文献   

14.
15.
We randomly assigned 189 cows in a commercial dairy farm to dietary treatments with supplemental corn grain (SC) or without supplemental corn grain (NC) approximately 3 wk before expected parturition. Diets formulated were similar except that dry ground corn replaced 21% of the corn silage in one diet. Cows fed SC had reduced plasma beta-hydroxybutyrate and tended to have increased plasma insulin concentrations prepartum compared with cows fed NC. Treatment did not affect nonesterified fatty acid concentrations prepartum, any blood variables postpartum, or incidences of health disorders. Effects of treatment on production responses were highly dependent on parity as indicated by parity x treatment x time interactions for milk and protein yields. Primiparous cows fed SC had lower milk protein yield, higher somatic cell count and days open compared with cows fed NC. The SC diet resulted in lower milk yields in early lactation and increased somatic cell count and days open for cows in second parity. However, cows in third parity or greater fed the SC diet yielded more milk and protein in early lactation, and had decreased somatic cell counts and days open. Increasing the corn grain concentration of the diet fed prepartum was advantageous to third and greater parity cows in this experiment, but showed no benefits during lactation for cows in first or second parities.  相似文献   

16.
Corn was sprayed in the field at dent stage of maturity with chlorpyrifos-methyl [O, O,-dimethyl O-(3, 5, 6-trichloro-2-pyridyl) phosphorothioate] at .56, 1.12, and 2.24 kg per hectare, ensiled 1 day later, and methodology for detection of residues was developed. Losses of total residues (chlorpyrifos-methyl and its pyridinol hydrolysis product) through 83 days of ensiling were equivalent to 55, 71, and 76% of that applied. Beginning 83 days post ensiling, control and treated silages were fed to 16 cows, 4 per treatment, for 42 days during which chlorpyrifos-methyl averaged .35, .87, and 1.85 ppm, and was stable. The pyridinol averaged .44, .79, and 1.75 ppm but continued to decline and during the last week of feeding averaged only 32% of that in silage fed the 1st wk. Residue intakes amounted to .009, .022, and .054 mg chlorpyrifos-methyl and .012, .020, and .051 mg of pyridinolk/g body weight and failed to affect silage intake, milk production, blood cholinesterase activity, or body weight gains. Traces of chlorpyrifos-methyl (.003 ppm or less) were only in milk from cows on the 2.24 kg treatment. Milk from all cows fed treated silage contained traces of the pyridinol (.011 ppm or less). No trace of the O-analog of chlorpyrifos-methyl was in any sample, and all milk, urine, and feces were free of residues within 1 wk after the cows were withdrawn from treated silage.  相似文献   

17.
18.
Adding sugar to the diet has been reported to improve production in dairy cows. In each of 2 trials, 48 lactating Holsteins (8 with ruminal cannulas) were fed covariate diets for 2 wk, blocked by days in milk into 12 groups of 4, and then randomly assigned to diets based on alfalfa silage containing 4 levels of dried molasses (trial 1) or liquid molasses (trial 2). In both studies, production data were collected for 8 wk, ruminal samples were taken in wk 4 and 8, and statistical models were used that included covariate means and block. In trial 1, experimental diets contained 18% CP and 0, 4, 8, or 12% dried molasses with 2.6, 4.2, 5.6, or 7.2% total sugar. With increasing sugar, there was a linear increase in dry matter intake (DMI), and digestibility of dry matter (DM) and organic matter (OM), but no effect on yield of milk or protein. This resulted in linear decreases in fat-corrected milk (FCM)/DMI and milk N/N-intake. There was a linear decrease in urinary N with increasing sugar, and quadratic effects on milk fat content, yield of fat and FCM, and ruminal ammonia. Mean optimum from these quadratic responses was 4.8% total sugar in these diets. In trial 2, experimental diets contained 15.6% crude protein (CP) and 0, 3, 6, or 9% liquid molasses with 2.6, 4.9, 7.4, or 10.0% total sugar, respectively. Again, there were linear declines in FCM/DMI and milk N/N-intake with increasing sugar, but quadratic responses for DMI, yield of milk, protein, and SNF, digestibility of neutral detergent fiber and acid detergent fiber, milk urea, urinary excretion of purine derivatives, and ruminal ammonia. Mean optimum from all quadratic responses in this trial was 6.3% total sugar. An estimate of an overall optimum, based on yield of fat and FCM (trial 1) and yield of milk, protein, and SNF (trial 2), was 5.0% total sugar, equivalent to adding 2.4% sugar to the basal diets. Feeding more than 6% total sugar appeared to depress production.  相似文献   

19.
We studied the effects of mechanical processing and type of hybrid on the nutritive value of corn silage for lactating cows. Treatments were brown midrib (BMR) corn silage that was unprocessed (U-BMR), BMR corn silage that was processed (P-BMR), and a conventional corn silage that was processed (P-7511). All silages were harvested at a theoretical chop length of 19 mm. The chemical compositions of the silages were similar among treatments except that BMR silages were lower in lignin and higher in protein than P-7511. Brown midrib silages had greater 30-h in situ and in vitro NDF digestion than did P-7511, and processing had no effect on 30-h in situ and in vitro fiber digestion, but it increased in situ starch digestion after 3 and 12 h of incubation. Both processed silages had a smaller proportion of particles >1.91 cm and fewer whole corn kernels compared with unprocessed silage. Lactating cows were fed a total mixed ration (TMR) consisting of 42% of each silage type, 40% concentrate, 10% alfalfa silage, and 8% alfalfa hay (DM basis). Cows fed TMR containing P-BMR ate more DM and produced more milk than cows fed P-7511. At feeding, the TMR containing U-BMR had a larger proportion of particles >1.91 cm when compared with the TMR of cows fed processed silages, and after 24 h the difference was even greater, indicating that cows fed unprocessed corn silage sorted more. Cows fed TMR with P-7511 and P-BMR had greater total tract digestibility of organic matter, crude protein, and starch compared with cows fed U-BMR. In vivo digestibility of neutral detergent fiber was greatest for cows fed P-BMR when compared with the other treatments.  相似文献   

20.
Effects of physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets on nutrient intakes, site and extent of digestion, microbial protein synthesis and milk production were evaluated in a double 3 x 3 Latin square design using 6 lactating dairy cows with ruminal and duodenal cannulas. During each of 3 periods, cows were offered 1 of 3 diets that were chemically similar but varied in peNDF content (high, medium, and low) by altering corn silage particle length. The peNDF contents were determined using the Penn State Particle Separator and were 11.5, 10.3, and 8.9%, for the high, medium, and low diets, respectively, and the physical effectiveness factors for the long, medium, and fine silages were 84.1, 72.6, and 67.2%, respectively. Increased forage particle length increased intake of peNDF but did not affect intakes of nutrients including dry matter, NDF, starch, and nitrogen. Except for starch, apparent digestibilities of nutrients in the total tract were linearly increased with increasing dietary peNDF. Fiber digestion was affected by dietary peNDF to a greater extent than were the other nutrients. However, increased digestibility due to increased dietary peNDF did not significantly improve milk production or milk composition. Increased dietary peNDF also increased numerically rumen microbial protein synthesis due to increased amount of organic matter fermented in the rumen. These results indicate that increasing the peNDF content of a corn silage based diet improves digestibility, especially digestibility of fiber, in the total tract. Dietary particle size, expressed as peNDF, is positively associated with nutrient digestibility when level of peNDF in the diet is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号